首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
槽缝射流对静叶端壁冷却性能的影响   总被引:2,自引:0,他引:2  
采用数值求解三维RANS方程和k-ω湍流模型,研究了槽缝射流对涡轮静叶端壁冷却性能的影响;通过对4种湍流模型数值结果与实验数据的比较,验证了标准k-ω湍流模型可以有效模拟静叶前缘端壁的冷却性能,揭示了槽缝宽度、入射段结构和端壁边界型线对静叶端壁冷却性能的影响规律。研究结果表明:在一定的槽缝射流流量下,减小槽缝宽度能够增大冷却射流的覆盖面积,提高静叶前缘气膜孔排附近区域的冷却效率;过渡相切圆弧的槽缝入射段结构具有最佳的静叶端壁冷却效果。端壁边界型线可改变节距方向上的槽缝冷却射流的流量分配,影响下游端壁的冷却效果,当端壁相对型线幅值为0.75、相位角为30°时,槽缝射流具有最佳的静叶端壁冷却效果。  相似文献   

2.
数值研究了无发散冷却与3种发散冷却气质量流量比下的涡轮静叶端壁附近涡结构、总压损失系数和端壁、叶表绝热冷却有效度以及两种冷却气在端壁上的流动结构。研究表明:发散冷却气质量流量比由5%增加至7%时,进口截面端壁附近的总压峰值升高3.7%,峰值区流体在叶片前缘滞止后向上卷起形成冲击涡;发散冷却流量增加会增强冲击涡而吸力面角区涡对被削弱。低流量冷却气会使整体总压损失降低,而发散冷却气质量流量比由5%升高至7%时总压损失增加4.5%。发散冷却气注入时,冲击涡会将冷却气携带至叶表,在压力面形成显著的泛冷却效果;发散冷却气质量流量比增加至7%会使冲击涡纵向伸长并分裂出三次涡。发散冷却贡献占比的计算结果表明,边界层分离线上游端壁由槽缝射流冷却气覆盖,而叶表和下游端壁的冷却由发散冷却主导。静叶端壁流动结构受到上游燃烧室内壁发散冷却的显著影响,并将改变端壁冷却特性。  相似文献   

3.
贫油预混燃烧室出口的强旋流和温度不均匀特征向下游迁移,直接影响了下游涡轮静叶栅端壁的气动性能,进而改变了气膜冷却端壁的传热冷却特性。设计了具有典型速度和温度出口特征的燃烧室,与实验数据对比,验证了设计的燃烧室出口具有典型的旋流和温度分布特征。采用数值求解三维雷诺平均N-S方程和剪切应力传输湍流模型SST k-ω研究了燃烧室出口旋流对静叶栅端壁流动型态和传热冷却特性的影响。对比分析了燃烧室出口旋流核心与静叶栅沿栅距5个相对位置时气膜冷却端壁的流场型态和传热冷却特性。研究表明:当燃烧室出口旋流中心正对静叶片1时,马蹄涡压力面分支横向迁移被削弱造成滞止点向下游移动,端壁传热恶化,第3排气膜冷却射流被带离端壁,绝热气膜有效度降低;旋流中心正对静叶片2时,马蹄涡压力面分支裹挟第2排气膜冷却射流冲击吸力面,二次冷却效果提升的同时端壁面平均气膜有效度提高,最大值为0.148,无量纲面平均热通量减小了0.055 5。该研究揭示了燃烧室出口旋流对下游静叶栅端壁流场型态和传热冷却特性的影响机制,为端壁气膜冷却布局设计提供了一定的参考。  相似文献   

4.
为了研究槽缝射流对环形叶栅端壁气膜冷却性能的影响,建立了考虑槽缝射流的环形叶栅端壁气膜冷却实验平台。在不同质量流量比条件下,利用红外测温技术研究了槽缝结构形式(均匀槽缝、收缩槽缝)对不同射流角下端壁气膜冷却效果的影响。结果表明:提高槽缝射流的质量流量比,可增强对叶栅端壁的气膜冷却效果。与原始均匀槽缝相比,收缩槽缝由于提高了槽缝射流出口的动量,能够显著提高不同射流角下的端壁气膜冷却性能,且明显扩展了气膜覆盖范围。与45°射流角相比,90°射流角时由于前缘涡系增强,槽缝射流所产生的端壁气膜冷却效果有所减弱。90°射流角时,采用收缩槽缝所带来的气膜冷却性能提升比45°射流角时更显著。  相似文献   

5.
上游台阶结构对跨声速透平叶栅端壁气膜冷却性能的影响   总被引:1,自引:0,他引:1  
为了评估上游台阶结构对端壁气膜冷却性能的影响,采用商用CFD软件ANSYS FLUENT数值研究了上游后向台阶结构对跨声速透平叶栅端壁上游双排离散气膜孔冷却效率的影响。模拟某工业燃气透平真实运行工况(进口湍流度Tu=16%、出口马赫数Maex=0.85、出口雷诺数Reex=1.5×106),采用基于两类热边界条件模型的壁面换热系数和绝热冷却效率数值预测方法,计算分析了在设计工况吹风比为2.5下,具有不同上游台阶高度(ΔH=0,3,6.78,10mm)的跨声速透平叶栅端壁热负荷分布、气膜冷却效率分布和近端壁二次流场结构。研究结果表明:上游台阶结构改变了近端壁流场,在台阶下游形成强度较大的空腔涡等复杂涡系结构,显著影响了端壁的热负荷和冷却气膜覆盖分布;随上游台阶高度的增加,叶栅通道上游端壁传热逐渐增强,形成显著的条状高传热区;端壁冷却效率呈现先增大后减小的变化趋势,在ΔH=6.78mm时,端壁气膜覆盖效果最好;在ΔH=10mm时,上游离散孔冷却射流被限制在近吸力面三角区域,端壁冷却效率低于无进口台阶结构...  相似文献   

6.
为研究尾迹影响下带有复合角扇形孔的涡轮叶片的气膜冷却效率变化规律,利用压敏漆技术获得了不同质量流量比、不同尾迹斯特劳哈尔数(0、0.12、0.36)下的涡轮叶片表面气膜冷却效率分布。研究结果表明:气膜孔复合角有利于射流的横向扩散,孔下游射流的覆盖面积较大;在无尾迹条件下,质量流量比的增加使得带有复合角气膜孔的涡轮叶片前缘与压力面大部分区域的气膜冷却效率提高,使得吸力面气膜冷却效率下降,吸力面靠近叶顶的低气膜冷却效率区域面积变小;在尾迹条件下,质量流量比的增加使得前缘、压力面以及吸力面靠近尾缘区域的气膜冷却效率提高,使得吸力面其他区域的气膜冷却效率降低;尾迹会使叶片表面气膜冷却效率显著降低,在尾迹斯特劳哈尔数为0.36的条件下,小质量流量比时叶片表面气膜冷却效率的平均降幅为35%,大质量流量比时平均降幅为26%,气膜冷却效率的下降幅度减小。  相似文献   

7.
为了研究叶栅上游间隙射流对扇形叶栅端壁气膜冷却性能的影响,自主设计并搭建了考虑环形叶栅效应的扇形叶栅试验系统,利用红外测温技术,实验研究了上游间隙射流对扇形叶栅端壁气膜冷却性能的影响,测量了不同间隙射流质量流量比和不同间隙射流角度条件下扇形叶栅端壁气膜有效度。实验结果表明:间隙射流能够对端壁前部区域形成一定的冷却保护,端壁二次流结构对于冷却气膜具有较大的影响,使得冷却气膜主要集中在叶栅通道前部端壁区域且靠近叶片吸力面的区域,而对于叶栅通道靠近叶片压力面侧几乎没有保护作用;随着间隙射流质量流量比的增加,端壁气膜有效度提高,气膜分布范围增大,减小间隙射流角度可有效提高冷却射流对端壁的气膜冷却作用;射流质量流量比为1.0%、1.5%、2.0%时,间隙射流角度由45°增加至90°使端壁气膜有效度最大降低了17%、15%和13%。  相似文献   

8.
针对航空发动机涡轮动叶片中应用旋流冷却的问题,建立了旋转条件下的旋流腔冷却模型,比较了静止和旋转条件下冲击与旋流冷却的流动传热特性差异,研究了旋转半径和叶片安装角对旋流冷却特性的影响规律。研究结果表明:叶片旋流腔旋转显著改变旋流冷却气动传热特性,旋转条件下旋流腔产生离心力和科氏力;离心力驱使冷气向叶顶方向运动,加强冷气横向冲击作用,使得高传热区域向叶顶方向偏移;科氏力方向为轴向上游或下游,引起冷气轴向回流,增强冷气掺混,减小射流冷气周向速度,显著降低了传热强度;旋转条件下,旋流冷却传热强度比冲击冷却提高了27.6%;与静止条件相比,旋转数为0.819时冲击冷却传热强度减小了30.0%,旋流冷却传热强度减小了18.6%;叶片旋流腔旋转半径增大时,冷气周向速度稍有减小,靶面平均Nu略有减小;叶片安装角增大时,旋流冷却流场和平均Nu不变,周向平均Nu分布均匀性降低。  相似文献   

9.
复合冷却涡轮导叶的气热耦合数值模拟   总被引:2,自引:1,他引:1  
邵婧  李杰  吴伟亮 《科学技术与工程》2014,14(5):292-296,313
采用气热耦合方法对高压涡轮一级导叶带全气膜冷却、冲击冷却和尾缘劈缝冷却的复合冷却结构进行了数值模拟。分析了带复合冷却结构叶片的三维温度场,主要研究了主流燃气雷诺数、冷气与燃气的流量比和燃气与冷气的温比对叶片温度和冷却效果的影响。结果表明:随着流量比增大,叶片前缘壁面平均温度先增后减,压力面和吸力面温度均减小。叶片壁面各处平均温度随温比增大而降低,受雷诺数影响很小。叶片综合冷却效果随流量比增大而增大,受温比和雷诺数影响很小。  相似文献   

10.
为了提高实际燃机涡轮端壁的气膜冷却效率,对某航空发动机涡轮静叶端壁的气膜冷却特性进行了数值模拟研究。首先采用实验结果对湍流模型进行了校核,并验证了所研究模型的网格无关性,在此基础上研究了端壁离散气膜孔的气膜冷却特性,并采用给定实验端壁热流输入条件计算了整个端壁的换热特性;分析了5种冷气质量流量比(1.4%、2.1%、2.7%、3.1%、3.8%)和5种气膜冷气射流角度(20°、25°、30°、35°、40°)下端壁离散气膜孔的流动特性、气膜冷却特性以及换热特性。计算结果表明:相同射流角(40°)条件下,冷气质量流量比为1.4%时,端壁平均气膜冷却效率达到0.21;继续增大冷气质量流量比会导致气膜脱离端壁表面,使得端壁整体的气膜冷却效率下降;随着冷气质量流量比增加,叶栅通道总压损失增加,强化了气膜孔出口处的气流掺混,增加了换热效率;受到端壁二次流以及原有气膜孔结构的影响,气膜冷气射流角度为20°时冷却效果最佳,在相同质量流量比(1.4%)条件下,端壁平均气膜冷却效率达到0.27;减小射流角度对端壁表面换热强度改变较小。  相似文献   

11.
为了研究叶栅装配间隙泄漏流对透平叶片端壁气膜冷却特性的影响,依据真实重型燃气透平叶片参数,搭建了端壁气膜冷却实验台。采用压力敏感漆技术测量了不同质量流量比和装配间隙角度下端壁的气膜冷却特性,使用压力扫描阀测量了主流进口雷诺数和叶片表面压力分布。通过数值计算模拟了实验叶片装配间隙的流动结构,得到了装配间隙冷气出流质量流量比及射流角度的气膜冷却特性。结果表明:在装配间隙冷气出流质量流量比为0.1%~1.0%的范围内,在相同射流角度下,增加装配间隙质量流量能够提升透平端壁气膜冷却有效度,并增大装配间隙下游出口气膜覆盖面积,冷气质量流量比为1.0%时端壁气膜冷却有效度达到最高。由于叶片端壁表面的压力梯度导致装配间隙出流集中在流道中部及出口位置。在研究的60°~90°射流角范围内,在相同质量流量比下,减小装配间隙射流角度能够有效提升端壁气膜冷却有效度,75°射流角相较于90°垂直入射条件下的气膜冷却有效度增加接近一倍;射流角为60°时端壁气膜冷却有效度达到最高。  相似文献   

12.
采用SST湍流模型数值研究了透平第二级转、静腔室的流动与封严特性,分析了冷却孔布置对腔室内的流动、冷却效率以及主流燃气入侵特性的影响。研究表明:冷却孔的位置对上游腔室内的流动影响较大,对下游腔室基本无影响;冷却孔距离上游越近,上游腔室的旋流比越大,级间密封进口的旋流比越小,密封进、出口压比越小,相应的流过级间密封的质量流量越小,上游轮缘密封的燃气入侵量越小,上游腔室转、静壁面的冷却效率就越大;下游轮缘密封出流的旋流比越小,相应的主流通道的流动损失越大,但冷却孔位置对下游腔室内的旋流比和壁面冷却效率的影响很小;随着冷却空气流量的增加,3种冷却孔布置下上游腔室壁面冷却效率的差值减小。  相似文献   

13.
全气膜冷却叶片表面换热系数和冷却效率研究   总被引:10,自引:0,他引:10  
为了研究全气膜冷却涡轮导叶叶片的换热特性,采用瞬态液晶技术获得了叶片全表面的高分辨率换热系数和冷却效率.实验在三叶片两通道放大模型中完成,叶栅进口雷诺数是1.0×105. 叶片前缘有8排复合角孔,压力面有21排轴向角孔,吸力面有24排轴向角孔.气膜孔排由2个供气腔供气,前腔二次流与主流的质量流量比为4.56%,后腔为4.67%.结果表明:受叶栅通道涡作用,气膜出流在吸力面呈聚敛状,在压力面则呈发散状.气膜出流受气膜孔角度影响,气膜孔下游的换热系数和冷却效率都较高.叶片前缘受到冲击,换热强,冷却效率低;叶片吸力面冷却效率维持在0.4左右,压力面维持在0.35左右.该全气膜冷却叶片气膜覆盖效果较好,冷却效率和换热系数分布均匀,是一种较好的冷却结构.  相似文献   

14.
叶片全表面换热系数和冷却效率的实验测量   总被引:5,自引:1,他引:4  
采用瞬态液晶技术测量了涡轮导叶叶片全表面的换热系数和冷却效率.实验叶片前缘区域有5排复合角度圆柱形气膜孔,压力面有10排圆柱形孔,吸力面有2排圆柱形孔和2排扇形孔,气膜孔排由2个供气腔供气.实验叶栅由3个直叶片构成,叶栅进口雷诺数是1.1×105,前腔二次流与主流的质量流量比为5.87%,后腔为1.06%.实验测量获得了叶片表面换热系数和冷却效率的二维分布云图,结果表明:气膜孔下游的换热系数和冷却效率都较高;扇形孔下游的冷却效率比圆柱形孔的高;受叶栅通道涡的影响,吸力面气膜覆盖区域收缩,压力面气膜覆盖区域扩张;吸力面换热系数分布受气流分离和通道涡影响.  相似文献   

15.
以轴向轮缘密封为研究对象,在传统直缝密封间隙结构的基础上,通过改变轴向外齿间隙区域的几何型线,设计了双曲线、椭圆及圆型密封导流段结构,数值求解了三维RANS方程组和SST湍流模型,并且系统深入研究了这4种不同导流段几何结构下轮缘密封射流对涡轮级的气动性能,以及对下游动叶端壁冷却性能的影响规律。研究结果表明:所设计圆型、椭圆型以及双曲型导流段结构均可提高涡轮级整体气动性能;圆型密封导流段结构具有最佳的气动性能以及端壁气膜冷却效果。相比于直缝型导流段结构,采用圆型导流段结构在相同的冷气流量下,涡轮级效率可提高约0.23%;在动叶前缘轮缘密封射流所覆盖的冷却区域,采用圆型导流段结构时冷却效率可提高约20%。  相似文献   

16.
质量流量比对全气膜冷却叶片冷却特性影响的实验研究   总被引:1,自引:0,他引:1  
孟庆昆 《科学技术与工程》2012,12(20):4951-4955
采用瞬态液晶技术获得了全气膜冷却涡轮导向叶片全表面的高分辨率气膜冷却效率分布云图。实验在放大模型中完成,叶栅构成为三叶片两通道,叶栅进口雷诺数是1.0?05。叶片前缘有8排扩张型孔,压力面有21排轴向角孔,吸力面有24排轴向角孔。气膜孔排由2个供气腔供气,前腔二次流与主流的质量流量比为4.56%,后腔为4.67%。结果表明:受叶栅通道涡作用,气膜出流在吸力面呈聚敛状,在压力面则呈发散状。在三种质量流量比情况下,叶片平均冷却效率分布大体一致。随质量流量比的提升,叶片平均冷却效率提高,叶片前缘区域,气膜冷却效率提升更加明显。  相似文献   

17.
 为了揭示吹风比M对气膜冷却效果的影响规律,在M=0.5,1.0,1.5,2.0工况下对平板气膜冷却圆柱孔模型和扩散孔模型进行了流动和传热的数值模拟对比研究。计算时基于控制容积法对三维定常不可压缩N-S方程进行离散,采用SIMPLEC算法,湍流模型选取可实现k-ε着模型,壁面函数采用增强壁面函数,分析比较了壁面温度分布、速度矢量和气膜冷却效率。结果表明,随吹风比增大,射流容易脱离壁面。在孔口附近区域,对圆孔而言吹风比对冷却效率的影响不明显,而对扩散孔冷却效率随吹风比增加而提高。在射流向下游发展过程中,就扩散孔而言较大的吹风比使得射流沿流向的覆盖区域增大;就圆孔而言较大的吹风比射流出现了回流,近下游位置处的冷却效率提高而远下游处的冷却效率降低。由此可见,针对不同的孔型,冷却效率随吹风比的变化规律不尽相同,圆孔的冷却效率不随吹风比单调变化,扩散孔的冷却效率随吹风比的增加而提高。  相似文献   

18.
为了设计一套满足传热及气动要求的涡轮叶片表面气膜孔方案,以某型涡轮第一级导叶为研究对象,对两种气膜冷却结构进行参数化设计。对冷却效果进行数值模拟,研究不同的气膜冷却方式在涡轮中对气动与叶片表面温度分布的影响。将两种冷却方式计算结果进行对比分析,结果表明:在相同边界条件下, 六列气膜孔结构可以减弱冷气射流冲量,减小与主流掺混时的损失,气动效率较四列气膜孔提高0.3%;六列气膜孔可增大冷气覆盖面积,同时有效防止射流穿透附面层进入主流,降低附面层扰动强度,削弱对上游气膜的影响,叶片表面无量纲温度降低了11.68%。  相似文献   

19.
为了研究不同冷却结构对叶片前缘冷却性能的影响,探究综合性能更为优越的冷却结构,建立了旋流冷却、冲击冷却和旋流与冲击冷却相结合的新型冷却模型,在相同的进气腔、喷嘴数及位置、旋流腔和气动条件下进行了数值研究,对旋流冷却、冲击冷却和新型冷却模型的综合换热性能进行了对比分析,并探究了不同雷诺数下组合冷却的换热性能、冷气分配和压降的变化规律。研究结果表明:旋流与冲击冷却相结合的冷却方式综合换热性能最佳,其综合换热系数相较于旋流冷却提高了0.2%,相较于冲击冷却提高了12.5%,其压力损失低于纯旋流冷却和纯冲击冷却;在旋流与冲击冷却相结合的冷却中,随着雷诺数的增加,努塞尔数得到显著提升。由于上游冲击冷却气与主流的相互碰撞,削弱了主流流速,加之上游顺时针涡旋向下游的发展,使得冷却腔室末端位置的换热性能得到增强。在旋流与冲击冷却相结合的冷却中,旋流冷却部分产生的涡旋对下游的影响较强,抵抗上游的横流能力较高,旋流冷却与冲击冷却的相互作用能够产生一个大尺度对涡和单涡旋;冷气分配不随雷诺数变化,流经冲击喷嘴的冷气较少。  相似文献   

20.
针对动静干涉影响下涡轮动叶前缘气膜孔射流与主流的相互作用展开研究,比较分析了叶根、中截面及叶尖区域气膜冷却流场和温度场分布特征的差异.结果表明:随着叶高的增加,前缘滞止线从吸力面侧逐渐向压力面侧偏移,压力面侧气膜射流贴壁性变弱;动静干涉使得气膜射流出现"分流"、"上扬"和"逆流"现象,对中心截面气膜覆盖的影响大于叶根和叶尖区域;气膜射流下游反转涡对呈现明显不对称性,吸力面侧反转涡对强度和尺度沿叶高方向不断降低,而压力面侧反转涡对的变化趋势相反;动静干涉降低了气膜冷却效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号