首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为了研究添加乙醚对生物柴油性能的影响,在1台单缸柴油机上对BD100生物柴油、D2.5(乙醚体积分数为2.5%)与D5(乙醚体积分数为5%)3种燃料的燃烧与排放特性进行了对比试验研究。研究结果表明:与BD100相比,D2.5与D5的燃烧始点在1 500r/min时几乎相同,在1 800r/min时略有延迟;峰值燃烧压力及峰值燃烧放热率增加,但对应的曲轴转角完全相同;第2峰值燃烧放热率明显降低,从而减少了燃烧过程的后燃量;燃烧放热率型心对应曲轴转角靠近上止点,提高了循环定容度,有利于提高有效热效率;有效燃油消耗率明显降低且有效热效率明显提高;1 800r/min负荷特性下,碳烟排放分别平均下降了20.78%与39.59%;1 800r/min负荷特性下,CO排放分别平均降低了27.82%与47.14%;1 800r/min负荷特性下,NOx排放分别平均增加3.41%与7.73%;HC排放没有明显规律。研究结果表明添加乙醚可以改善生物柴油的燃烧和排放特征。  相似文献   

2.
生物柴油-乙醇-水微乳化燃料的燃烧和排放特性   总被引:1,自引:0,他引:1  
为了研究生物柴油-乙醇-水微乳化燃料在柴油机上的应用,在一台单缸直喷式柴油机上进行了燃烧特性和排放特性的对比试验,分别使用燃烧分析仪和排放分析仪,测录燃料的燃烧压力和排放浓度.研究结果表明:与生物柴油相比,随着乙醇和水的加入,微乳化燃料的压力曲线、压力升高率曲线以及放热率曲线明显后移;小负荷时,生物柴油-乙醇-水微乳化燃料峰值燃烧压力高,而峰值压力升高率和峰值瞬时燃烧放热率略低;大负荷时,微乳化燃料峰值燃烧压力、峰值压力升高率和峰值瞬时燃烧放热率均明显增加;微乳化燃料燃烧开始时放热明显滞后,燃烧结束时放热明显提前,微乳化燃料NOx和烟度排放降低.  相似文献   

3.
针对目前柴油机替代燃料多为单一项,且替代燃料性能各有特点的状况,将F-T柴油和生物柴油掺混燃烧,通过试验研究,分析了0#柴油与3种混合柴油(B20F,B50F,B100)在2 400r/min不同负荷下的燃烧特性。结果表明,混合燃料随着生物柴油添加比例的增加,滞燃期变长,燃烧压力峰值、压力峰值相位、压力升高率峰值及放热率峰值均逐渐增大,但均比0#柴油低;且随着负荷的增加,燃烧压力、压力升高率和瞬时放热峰值均先增后减;混合燃料的碳烟排放明显降低,B50F和B80F的NOx排放与0#柴油接近,B20F的NOx排放比0#柴油降低了2.1%~16.7%。B20F是一个较好的混合比例,是一种较好的替代燃料。  相似文献   

4.
在电控共轨高速柴油机试验台上,对比研究了分别以纯柴油和聚甲氧基二甲醚(PODE)/柴油(φ_(PODE)=20%)为燃料时,喷射压力、预喷相位和主喷相位等喷油参数对发动机燃烧及其颗粒物排放特性的影响.结果表明:当喷射压力增大时,预喷燃料放热相位提前,预喷燃烧放热率幅值降低,主喷放热相位提前,最高爆压升高,积聚模态颗粒物排放显著降低,柴油发动机在小负荷下的核模态颗粒物排放大幅升高;当预喷相位提前时,预喷放热相位略微提前且峰值下降,引起小负荷工况下的主喷放热相位延迟,燃烧放热率峰值显著增大,缸压降低,增加了柴油发动机的核模态颗粒物排放而降低了积聚模态颗粒物的排放,且受发动机负荷影响明显;当主喷相位提前时,缸压峰值增大、放热相位提前,使得低负荷下的颗粒物排放升高,高负荷下的颗粒物排放降低;掺混PODE燃料后,柴油发动机的核模态颗粒物排放增大的趋势得到有效抑制.  相似文献   

5.
商用柴油机中排放的颗粒物对自然环境和人类健康有着越来越大的危害。为进一步研究喷油压力和PODE掺混比对降低柴油机颗粒物的潜力,在一台四缸增压柴油机上,进行了小负荷(BMEP=0.4 MPa)和大负荷(BMEP=0.8 MPa)工况下喷油压力和PODE掺混对柴油机颗粒物排放特性影响的试验研究。三种燃料分别为纯柴油(记为D100),PODE按体积比20%和30%与柴油进行掺混(分别记为PD20和PD30)。结果表明:在柴油中添加PODE能降低混合燃料的总颗粒物数浓度和质量浓度。在小负荷工况下,随着喷油压力升高,柴油/PODE混合燃料的总颗粒物和核态颗粒物数浓度增加,总颗粒物质量浓度变化不大。在大负荷工况下,与柴油相比,柴油/PODE混合燃料的总颗粒物数浓度和质量浓度降低。随着负荷增加,发动机排放的总颗粒物数浓度降低,总颗粒物质量浓度增加。在同一负荷下,随着喷油压力升高,总颗粒物数浓度进一步降低。  相似文献   

6.
在试验柴油机上进行了柴油缸内直喷结合丁醇气道喷射的复合喷油燃烧试验,分别研究了转速1 400 r/min和1 900 r/min、平均指示压力0.5 MPa和1.0 MPa 4个工况下丁醇气道喷射比例对复合喷油燃烧排放特性的影响.结果表明,丁醇比例是柴油-丁醇复合喷油燃烧过程的重要控制参数.随丁醇比例的增大,碳烟排放降低,氮氧化物排放轻微增加,HC和CO排放显著增加.与柴油-丁醇混合燃料直喷燃烧模式相比,相对低的指示热效率和高的HC排放是柴油-丁醇复合喷油燃烧面临的主要问题,因而需要对丁醇气道喷射策略进行进一步的优化.  相似文献   

7.
在186FA单缸小型柴油机上,研究了1 800,2 700,3 600r·min~(-1)条件下满负荷工况时,燃用纯柴油和B10调合生物柴油对柴油机燃烧和排放性能的影响.实验结果表明:满负荷工况下,燃用调合生物柴油的缸内压力峰值和压力升高率峰值均高于纯柴油,但放热率峰值低于纯柴油,各峰值所对应的曲轴转角相对上止点均提前;燃用调合生物柴油与纯柴油,发动机动力性基本一致;与纯柴油相比,燃用调合生物柴油的排放性能得到有效改善,CO、碳氢化合物(HC)和颗粒物的最大降幅分别为29.09%、30.43%和35.79%,但NO_x的排放量增加了4%~7%;燃用调合生物柴油的经济性得到一定程度的改善,有效热效率在3种实验工况下分别提高7.42%、6.72%和8.42%.  相似文献   

8.
为了研究生物柴油对柴油机燃烧及颗粒物组分的影响,在一台四缸车用共轨柴油机上进行发动机燃用调合生物柴油的性能试验,利用燃烧分析仪分析生物柴油对发动机燃烧过程的影响,利用热重分析仪(TGA)研究颗粒物氧化特性,利用气相色谱/质谱联用仪(GC-MS)研究生物柴油对颗粒物SOF组分的影响。结果表明:随着生物柴油掺混比例的增加,发动机最大爆发压力增大,缸压曲线前移,预混燃烧放热率峰值减小,峰值对应的曲轴转角提前,B20放热率峰值对应的曲轴转角比B0提前2.8°CA,峰值减小19%。随着生物柴油掺混比例增加,颗粒物中H2O和可溶性有机物(SOF)的质量分数增加,碳烟(Soot)和无机盐的质量分数减小,并且颗粒物中SOF的组分酯类及酸类物质增加,烷烃类、芳香烃及酚类物质相应地减少。B0排放颗粒物中SOF的碳原子数主要在C12~C24之间,B20排放颗粒物中SOF碳原子数分布范围较为集中,主要在C15~C22之间。  相似文献   

9.
车用柴油机燃用柴油/乙醇混合燃料进行试验,采用DMS500快速响应颗粒分析仪进行颗粒物浓度和粒径分布测试,分析乙醇掺混比例、发动机运行工况对颗粒物粒径分布、质量浓度和几何平均直径的影响.研究表明:柴油/乙醇排放的颗粒物呈核态、积聚态双峰对数分布;随掺醇比的增加,小负荷下核态颗粒物数浓度明显降低,中、大负荷下积聚态颗粒物数浓度明显降低,核态颗粒物比例有所增加,颗粒粒径向小粒径方向移动;柴油/乙醇排放颗粒质量浓度普遍低于柴油,颗粒物排放主要集中在积聚态颗粒物;乙醇的掺混能有效降低颗粒物几何平均直径,随掺醇比的增加,颗粒物的几何平均直径呈下降趋势.  相似文献   

10.
利用发动机试验台架和燃烧分析仪,测录了燃烧压力随曲轴转角的变化关系,计算并对比分析了发动机燃用生物柴油和柴油时的燃烧放热规律.结果表明:与燃用柴油相比,生物柴油的最高燃烧压力和最大压力升高率在低速、小负荷时明显较高;在高速、小负荷时与柴油发动机的基本相同;在大负荷时低于柴油机的水平,对应的曲轴转角略有提前;生物柴油的瞬时燃烧放热率峰值随转速和负荷的变化趋势与最高燃烧压力基本相同,对应的曲轴转角提前2° CA~3° CA;生物柴油的燃烧始点比柴油早1° CA~2° CA,整个燃烧过程有所前移;生物柴油发动机在小负荷时工作粗暴,而在大负荷时工作柔和.  相似文献   

11.
在单缸直喷柴油机上燃用生物柴油混合燃料进行动力性与经济性、燃烧与排放特性试验。研究表明:与燃用纯生物柴油相比,发动机燃用生物柴油醇类混合燃料功率降低;有效燃油消耗率增加,有效能量消耗率降低;燃烧压力曲线后移,小负荷时峰值压力降低,中高负荷时峰值压力增加;CO与碳烟排放浓度降低(掺混甲醇效果更好)、HC排放略有增加但绝对值低、NOX排放基本保持不变。  相似文献   

12.
柴油机燃用生物柴油燃烧与排放   总被引:2,自引:0,他引:2  
研究了柴油机燃用0号柴油和生物柴油的燃烧放热规律.通过对燃烧特征参数的计算分析,发现生物柴油的燃烧始点有所提前,滞燃期缩短;燃烧初期放热尖峰出现时刻对应的曲轴转角有所提前,瞬时放热率峰值下降;燃烧持续期延长.同时还比较了柴油机燃用生物柴油和0号柴油的经济性和排放特性,发现燃油消耗率增加12%,而各种排放污染物除NOx略有上升外,CO、HC和颗粒物PM均显著下降.  相似文献   

13.
针对不同醇类组分对柴油机的实用性影响进行研究。在单缸柴油机上分别燃用纯柴油、乙醇柴油和正丁醇柴油三种燃料,并进行负荷特性的燃烧排放对比试验。结果表明,与纯柴油相比,正丁醇柴油和乙醇柴油的滞燃期延长0.1°~2°曲轴转角,最大放热率峰值升高最大可达36%,最大爆发压力推迟约0.4°~4°曲轴转角;中等转速1500 r/min时,正丁醇柴油和乙醇柴油的动力性优于纯柴油;高转速2000 r/min时,正丁醇柴油、乙醇柴油与纯柴油动力相当,正丁醇柴油的当量燃油消耗率与乙醇柴油、纯柴油相比分别减少约2.5%和4%。正丁醇柴油的NOx排放大多数工况下低于纯柴油约17%~39%,且降低效果较乙醇柴油更为明显,而乙醇柴油在标定转速中高负荷工况时NOx排放高于纯柴油;醇类柴油的碳烟排放比纯柴油降低,正丁醇柴油相对于乙醇柴油抑制碳烟生成的工况点更多,在标定点工况下正丁醇柴油比纯柴油的碳烟可降低62%。可见作为柴油机的替代燃料,在大多数工况下正丁醇柴油燃烧排放性能优于乙醇柴油。该研究为柴油机燃用正丁醇的推广提供了试验依据。  相似文献   

14.
通过发动机台架试验研究了F-T柴油引燃甲醇在柴油机上的NOX和颗粒物(Particulate matter,PM)排放以及二者之间的平衡问题。结果表明:柴油机燃用二元煤基燃料较F-T柴油NOX和PM排放最高降低45.8%和41.2%;0.30 MPa和0.60 MPa,1 600 r/min时,NOX排放较低;PM排放在2 000 r/min下最低,在1 200 r/min下最高;0.45 MPa,1 200 r/min和2 000r/min时,供油时刻为20°CA BTDC附近可以得到较低的PM排放和较低NOX排放,而在1 600 r/min下二者出现tread-off关系。F-T柴油引燃甲醇在柴油机上可以同时有效降低NOX和PM排放。  相似文献   

15.
利用缸内燃烧可视化技术研究了催化柴油的碳烟生成过程和浓度分布规律,并分析了高压共轨柴油机燃用催化柴油的燃烧特性和烟度排放.结果表明:随着CeO_2质量浓度的增大缸内燃烧时碳烟火焰出现位置提前,消失的时刻更早;与燃用纯柴油相比,催化柴油的缸内碳烟生成区域减小,碳烟浓度降低,碳烟面积占有率比较小,而柴油机排气烟度有所降低,且随着负荷的增加改善效果更明显;纳米CeO_2颗粒会改善燃油燃烧过程并提高放热速率,柴油机燃用催化柴油后燃烧始点提前,缸内压力峰值、放热率峰值和压力升高率峰值均增大,且对应相位更加靠近上止点.  相似文献   

16.
超细颗粒物是雾霾的重要组分,对人体健康影响极大。在一台六缸高压共轨柴油机上研究不同工况下Sub-220 nm超细颗粒物的排放特性,结果表明:碳烟排放在小负荷时极低,且随着负荷的增加而增加;Sub-220 nm超细颗粒物排放数量浓度在小负荷时高,且随负荷的增加而降低;Sub-220 nm超细颗粒物数量浓度的粒径分布为在小负荷和满负荷时是双峰特性,其余工况是单峰特性;转速升高,缸内气流运动加强,超细颗粒物排放数量浓度明显降低,各特征直径明显降低。  相似文献   

17.
在一台由轻型柴油机改装的正丁醇/柴油双燃料发动机上,研究了上止点附近喷射柴油条件下不同质量浓度的正丁醇预混合气对正丁醇/柴油复合燃烧及排放的影响规律.结果表明:缸内温度达到1 150~1 200 K时,正丁醇预混合气发生自燃,且自燃始点随着负荷和正丁醇喷射量的变化保持恒定;随着正丁醇喷射量的增加,燃烧持续期大幅度缩短,且放热率较高;在平均有效压力p_B≤0.50 MPa时,NO_x和soot排放均小幅度降低,HC和CO排放随正丁醇预混合气的质量浓度的增大呈线性增加;在p_B0.78 MPa时, HC,CO和NO_x排放几乎维持在纯柴油燃烧模式排放的水平,但soot排放大幅度降低.  相似文献   

18.
针对甲醇/生物柴油在小型农用柴油机上的应用,采用3维CFD软件建立了186FA柴油机的缸内燃烧、排放仿真模型,通过对比排放污染物的试验值和计算值,验证了模型的正确性.对3 000 r·min-1,5.7 k W时,柴油机直接燃用生物柴油和生物柴油掺混15%甲醇形成的混合燃料的缸内燃烧和排放污染物进行了数值模拟.结果表明:与生物柴油相比,生物柴油掺混15%的甲醇,柴油机的滞燃期延长,放热始点对应的相位后移,缸内最大爆发压力降低不多,最大压力升高率和最大放热率略有升高;最高燃烧温度基本不变,温度场内的高温区域有所缩小;曲轴转角为370.0°~400.0°时,O2低浓度区域比燃用生物柴油时有所扩大,NOx和soot的平均体积分数同时降低.  相似文献   

19.
为了研究加氢生物柴油-乙醇-柴油三元燃料的燃烧和排放性能,配制加氢生物柴油-柴油二元燃料(PHC10、PHC20、PHC30)和加氢生物柴油-乙醇-柴油三元燃料(PHC5E5、PHC10E10、PHC15E15),选取1 800r/min时25%、50%、75%和100%负荷工况作为测试工况,在高压共轨四缸柴油机上对各混合燃料进行燃烧试验研究。试验结果表明:在100%负荷工况下,与柴油相比,二元燃料、三元燃料的着火时刻分别提前、滞后,这是加氢生物柴油和乙醇的不同十六烷值影响的结果;二元燃料的着火时刻提前,着火延迟期内形成的可燃混合气数量较少,而且加氢生物柴油的低热值较低、运动黏度较高,在主燃烧阶段内的最大缸压和放热率峰值均低于柴油;对于三元燃料,初期燃烧放热可以有效降低乙醇的汽化潜热带来的不利影响,而且乙醇挥发性能较好和氧含量较高,使得三元燃料在主燃烧阶段内的最大缸压和放热率峰值均大于柴油。三元燃料的HC和CO排放均高于二元燃料,二者的差异随着负荷的增大而减小;混合燃料的NOx排放受负荷影响较大,在25%和50%负荷工况下,三元燃料的NO_x排放低于二元燃料,而在75%和100%负荷工况下呈现相反的趋势;三元燃料的碳烟排放低于二元燃料。该研究可为加氢生物柴油-乙醇-柴油三元燃料在发动机上的应用提供基础数据。  相似文献   

20.
分别在100mL生物柴油(M0燃料)中添加10mL甲醇、20mL甲醇与12mL油酸,经过相关处理后形成新的微乳化燃料M10燃料与M20燃料。以台架试验与排放分析法为基础,当发动机转速点为1 500r/min、平均有效压力分别为0.088 9、0.177 0、0.266 0、0.354 0、0.443 0、0.531 0MPa时,分别对3种燃料的燃烧特性与排放特性进行了试验研究。试验结果表明:与M0燃料相比,M10燃料与M20燃料的滞燃期延长,燃烧持续期缩短,3种燃料的最大滞燃期分别为6°、7°、8°;M10燃料与M20燃料的峰值压力、峰值压力升高率以及峰值燃烧放热率均增大,3种燃料的最大峰值压力升高率分别为1.236、1.377、1.280MPa/(°),3种燃料的最大峰值燃烧放热率分别为0.280、0.281、0.297kJ/(°);M10燃料与M20燃料的HC、CO与碳烟排放均降低;NOx排放没有明显变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号