首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了提升前方车辆测距精度,提出了一种基于改进目标检测(SSD)算法的车辆检测与测距方法。采用场景仿真软件PreScan搭建测试场景,使用改进的SSD算法,对摄像头采集的视频进行车辆目标检测。将检测框下边缘的中心点坐标作为图像中车辆坐标,根据单目视觉测距算法进行车辆目标测距。实验结果表明:在网络阈值为0.9时,改进的SSD算法对小车辆目标检测精度提升了6.6%。可以检测到70 m左右的目标,提出的测距方法可以达到2%的精度。  相似文献   

2.
包含目标识别与边界框选定的目标检测是无人驾驶视觉感知中的关键技术之一。采用基于深度计算机视觉组网络(VGGNet)的新型单次多框检测算法(SSD)进行驾驶环境中的关键目标检测、语义标注和目标框选;同时,针对具体驾驶场景,提出了改进的SSD_ARS算法。通过优化梯度更新算法、学习率下降策略和先验框生成策略,在提高平均检测精度的同时使得小目标类别的检测精度得到明显提升。在实际驾驶场景中9类关键目标的检测实验上验证了本文算法的有效性,实验结果表明,检测速度满足实时检测需求。  相似文献   

3.
针对复杂驾驶场景下的目标检测问题,提出一种基于扩张卷积特征自适应融合的目标检测算法.采用单阶段目标检测网络RetinaNet作为基本框架,其包含卷积特征提取、多尺度特征融合以及目标分类与回归子网.为提高网络对多尺度特征的提取能力,设计了基于不同扩张率组合的残差卷积分支模块,以获取不同感受野下的目标特征图;然后,将不同尺度下的特征通过网络自适应学习的参数融合后输出,用于后续的目标预测;最后在大规模且多样化的复杂驾驶场景数据集BDD100K上进行实验.结果 表明,利用扩张残差卷积分支模块与特征自适应融合算法能够分别将网络的平均精度均值由0.330提升至0.338与0.344,并在采用扩张卷积特征自适应融合的情况下达到了0.349.所提算法能够有效提升目标检测算法在复杂驾驶场景下的检测性能.  相似文献   

4.
为改善在目标尺度变化场景下的检测效果,在SSD算法基础上提出了一种改进方案。首先利用级联膨胀卷积对卷积层进行二次特征提取,然后通过密集连接方式获取目标的上下文信息,最后使用权重共享实现模型优化并采用多任务学习策略预测目标的类别及位置。在UA-DETRAC数据集上的实验结果表明,改进算法的平均精度达89%,超过Faster R-CNN算法17%左右,超过SSD算法10%左右。本文算法对多尺度目标检测任务具有更好的精确性和鲁棒性,能适应遮挡和光照不均匀等应用场景。  相似文献   

5.
在各类机器人的应用逐渐广泛化的过程中,机器人场景理解越来越受到人们的重视.为了提高政务服务机器人的场景理解精度与有效性,实验中对SSD算法进行优化,将获取到的DSC-SSD目标检测算法与图像语义分割等进行有机结合,随后进行网络模型训练与图像检测实验.结果显示,随着模型训练迭代次数的增加,DSC-SSD算法的损失函数值不断降低,准确率持续提升;其查准率、查全率、平均精度、每秒识别帧数均高于其他算法,定位准确性的平均值可达到0.934.这表明DSC-SSD算法能够实现对政务场景内容的准确理解.  相似文献   

6.
针对传统YOLOv3(you only look once-v3)算法目标检测精度较低、收敛速度较慢等问题,提出了一种改进的YOLOv3算法,分别对主干网络和损失函数进行了改进。采用迁移和冻结相结合的训练方法,以提升目标检测的精确度和速度。基于改进的YOLOv3算法对西南某通航机场3种不同场景下的运动目标检测效果进行了对比分析。结果表明,改进的YOLOv3算法对正常天气场景下的场面运动目标检测效果要明显优于雾天和雨天场景,对飞机目标的检测效果明显优于车辆和行人目标;3类目标的检测精度、召回率、平均精度值(mean average precision, mAP)分别达到92.96%、80.51%、91.96%,GPU处理速度为74.0帧/s,较传统YOLOv3算法和YOLOv4算法性能均有明显提升。  相似文献   

7.
智能巡检技术逐步替代人工巡检有效提高检测效率,降低人力成本,成为智能巡检系统中的重要组成部分.目前现有的智能巡检技术在复杂场景下可识别的设备部件种类较少,检测精度和速度较低,对于小部件(例如按钮等)的识别效果较差.为了达到较好的检测效果和一定程度的广泛适用性,提出了一种基于改进SOLOv2的智能机器人巡检识别算法.本方法能较好地应对复杂场景下多种类设备部件的精准定位及模态提取问题,解决了现有智能巡检技术可识别部件种类少的问题.针对实例分割算法SOLOv2对于小目标识别精度低的问题,通过增加特征金字塔网络中大尺寸层级特征图的输出,增加小目标物体的正样本数量,提高小目标识别精度.实验结果表明,本文提出的方法相较于目前的巡检识别算法,具有更好的识别精度,复杂场景下的鲁棒性更高;相比较原有的智能巡检系统,可识别种类提高12类;相较于原始SOLOv2算法,小目标物体的精度提升10%左右,整体的识别精度也提升1.7%.  相似文献   

8.
目前遥感影像目标检测算法大多针对良好天气,一旦出现雾霾,则必然影响检测效果。为使目标在良好天气或雾天条件下均能有较优的检测精度,提高模型适用性。以飞机检测为例,提出一种基于影像处理的clear-SSD单点多盒目标检测模型。该模型在SSD检测算法前增加了影像处理算法,即先对待检测的遥感影像进行清晰化处理,再通过SSD检测算法提取影像中的飞机。比较不同清晰化算法对检测精度的提升效果,选择适用性最优的算法作为模型前端,备选清晰化算法包括暗通道、高斯同态滤波及线性同态滤波,研究表明,三种清晰化算法对精度均有改善,其中高斯同态滤波的适用性最优,平均检测精度达到0.9843,比原始SSD模型提高了0.043,因此,将高斯同态滤波作为clear-SSD模型的影像处理部分。  相似文献   

9.
针对在复杂边缘计算场景下外力破坏目标检测识别精度低与实时性差的问题,提出YOLO-ERFA轻量化目标检测算法。该算法采用跨阶段残差结构的CSPDarkNet53-Tiny作为特征提取网络,在保证模型轻量化的同时提高检测准确率;在此基础上,通过改进空间金字塔池化并融合高效通道注意力机制构建特征增强层以提升模型精度和对多尺度目标的检测能力,并在训练阶段使用改进的Mosaic算法增加样本背景虚化以提高模型在复杂场景下的抗干扰能力。实验结果表明,该方法在测试集上检测平均准确率达到了91.58%,在Jetson TX2平台推理速度达30 FPS,且模型内存大小仅为26.50 MB,提高了算法在边缘计算设备上部署的可行性。  相似文献   

10.
提出基于多尺度特征融合单次多框检测器(SSD)算法,对微精密玻璃封装电连接器的缺陷进行检测.针对SSD算法在背景复杂、噪声干扰多、目标特征微弱环境下,特征提取能力弱、检测精度低的问题,在主干网络加入深度残差结构,丰富细节信息;针对在卷积网络中关键信息逐步丢失问题,提出了自顶向下的多尺度特征融合方法将含有上下文信息的高语义层与含有位置信息的低层特征进行融合,使得融合后的特征层包含丰富的边界信息和背景信息;在此基础上,构建了一种轻量级的通道注意力模块,增强SSD算法对特征层重要特征的提取并弱化无关特征,从而提高SSD网络的特征提取能力.实验结果表明:改进算法相对于原始的SSD算法,精度由86.42%提高到了91.28%.  相似文献   

11.
单次多边界框检测器(single shot multibox detector, SSD)算法因其性能优良已被应用于许多场景中,但该算法对小目标物体的检测精度偏低,主要原因是高层的语义信息没有被充分利用。为解决该问题,文章将其基础网络替换为残差网络(residual network, ResNet),同时融合深浅层的特征信息来增强浅层特征图的语义信息,此外还引入注意力模块,保留更多的目标特征信息,抑制无关信息,进一步提升对小目标物体的检测效果。在PASCAL VOC2007数据集上进行实验测试,平均精度均值为80.2%,优于其他SSD改进算法。由于增加了特征融合和注意力模块,所提算法检测速度有所下降,但相比于SSD改进算法,检测速度仍有明显的优势。  相似文献   

12.
针对复杂场景下交通标志检测存在精度低、检测速度慢等问题,提出一种基于YOLOv3改进的S-YOLO(stronger-YOLO)交通标志算法。首先,合并批归一化层到卷积层,以提升模型前向推理速度;其次,采用二分K-means聚类算法,确定适合交通标志的先验框;然后引入空间金字塔池化模块,提取特征图深度特征;最后引入完整-交并比(complete-IoU,CIoU)回归损失函数,提升模型检测精度。实验结果表明,在重制的中国交通标志数据集(Chinese traffic sign dataset,CTSDB)下,所提算法与YOLOv3相比,平均准确率和检测速度分别提升了4.26%和15.19%,同时相较YOLOv4以及其他算法对交通标志识别有更优的精度和速度,具有良好的鲁棒性,满足复杂场景高效实时检测。  相似文献   

13.
针对交通场景下行人检测模型网络复杂、参数量大以及难以在低性能设备上部署的问题,基于YOLOv5s网络模型提出了一种改进的轻量级行人检测算法。首先,使用Ghost模块重构YOLOv5s网络进行特征提取,降低模型的参数量和计算量,提高推理速度。其次,引入坐标注意力机制提高模型对目标特征的提取能力,提升其对小目标行人的检测效果。最后,采用SIoU损失函数加快模型的收敛速度,提高模型的识别准确率。实验结果表明,改进后的算法能保证较高的检测精度,与原始YOLOv5s算法相比参数量减少47.1%,计算量减少48.7%,提高了交通场景下行人检测的速度且易于部署。  相似文献   

14.
针对视频监控系统中,复杂环境引起摄像机抖动,造成运动目标检测不准确的问题,提出了一种基于分区灰度投影稳像的运动目标检测算法.首先对每帧图像进行分区,利用分区灰度投影算法对图像各分区的运动矢量进行准确提取和相关性分析,进行抖动判断,并对抖动帧进行运动补偿.然后利用高斯混合背景建模算法进行运动目标提取.最后对目标提取结果进行形态学处理,以进一步提高目标提取的精度.实验结果表明,本文算法较好地消除了场景中运动目标对运动矢量计算的干扰,实现了在摄像机抖动视频场景中的运动目标的准确检测和提取,大大降低了抖动视频目标检测的虚警率.  相似文献   

15.
针对密集场景下行人检测的目标重叠和尺寸偏小等问题,提出了基于改进YOLOv5的拥挤行人检测算法。在主干网络中嵌入坐标注意力机制,提高模型对目标的精准定位能力;在原算法三尺度检测的基础上增加浅层检测尺度,增强小尺寸目标的检测效果;将部分普通卷积替换为深度可分离卷积,在不影响模型精度的前提下减少模型的计算量和参数量;优化边界框回归损失函数,提升模型精度和加快收敛速度。实验结果表明,与原始的YOLOv5算法相比,改进后YOLOv5算法的平均精度均值提升了7.4个百分点,检测速度达到了56.1帧/s,可以满足密集场景下拥挤行人的实时检测需求。  相似文献   

16.
在施工的过程中,需要对人员安全帽佩戴情况进行快速准确地检测并及时预警,实现减少生命和财产的损失。但现有的安全帽佩戴检测算法存在检测速度慢、检测精准度不高等问题,为解决此类问题,提出了一种基于目标检测算法SSD(Single Shot Multi Box Detector)的改进安全帽佩戴快速检测算法。通过使用轻量型卷积神经网络Mobile Net V3-small替换SSD检测算法的卷积神经网络VGG-16,实现减少模型参数,提升检测速率的目的;同时使用特征金字塔网络结构将深层更抽象的特征与浅层更细节特征进行信息的融合,提升检测精确度;以自主制作安全帽数据集HWear的方式进行训练和测试实验,训练时利用数据增强技术提高模型的检测性能。实验结果表明,改进的SSD算法提升了人员安全帽佩戴检测速率,达到108 fps,同时相比于SSD算法平均精确率(mAP)提升了0.5%,具有一定的实践意义。  相似文献   

17.
针对SSD目标检测算法在检测目标过程中存在漏检的现象,提出一种特征增强的SSD目标检测算法。该算法通过将特定连续特征层进行特征融合,获取更为丰富的目标细节特征信息,以此来改善目标的特征表达效果,提升目标检测正确率。经仿真测试,该算法对车辆、自行车和行人等道路参与者检测效果均有提高,在PASCAL VOC2007数据集上的测试结果与原有SSD检测算法相比,mAP提高0.78%,适合于车载与移动机器人等场景的目标检测应用环境。  相似文献   

18.
针对SSD目标检测算法运用于自动驾驶领域时,在检测道路上小目标容易发生漏检错检的情况,本文提出一种改进的SSD目标检测算法。本算法首先在SSD模型的主干网络中嵌入感受野增强模块,扩大特征层的感受野,以获取更多小目标的特征信息;然后在主干网络后加入4次U型特征提取结构,构建4个不同层级的特征金字塔,最后合并成一个多层级特征金字塔用于检测。结果表明,该改进SSD模型在KITTI数据集上的检测精度较原始SSD模型提升了6%,检测速度达到了每秒27.9帧。在兼顾检测效率的同时,有效提高了对道路上小目标的检测精度,更适用于自动驾驶领域。  相似文献   

19.
为研究采区煤岩体中裂隙、断裂、破碎带等结构面的自动检测技术,解决现有人工智能技术中迭代次数大、检测框准确度低等问题,采用YOLOv5算法融合注意力机制、损失函数、多尺度检测的方法,对煤矿巷道上顶板5种不同地质钻孔进行裂隙检测试验。结果表明:将注意力机制SENet引入YOLOv5模型框架,避免了图像背景区域与裂隙区域相似度较高问题;采用有效交并比损失函数代替完全交并比损失函数,使得预测框能够更加有效拟合真实目标框;对YOLOv5模型增添3种不同尺寸的锚定框并添加160×160特征层,实现检测更小的目标。该方法与SSD、YOLOv5等检测算法在同样条件下相比,其检测精度分别提升了18.9%,2.1%,召回率提升了39.5%,1.6%,平均精度提升了28.1%,1.0%。改进后的模型将三尺度检测变为四尺度检测,提升了算法的多尺度目标检测性能,能够对钻孔裂隙进行高精度检测,满足钻孔裂隙实时检测需求。  相似文献   

20.
传统的基于高分辨率遥感影像的典型地物检测方法难以兼顾检测精度、处理速度和自动化程度,而深度学习方法在图像处理领域中的应用为解决上述问题提供了可能.选用RSOD-Dataset数据集,基于TensorFlow深度学习框架,采用Faster R-CNN、YOLOv3和SSD三种经典深度学习目标检测算法,对高分辨率遥感影像数...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号