共查询到20条相似文献,搜索用时 15 毫秒
1.
采用联合动态稀疏表示方法构造一种新型的多图像人脸识别模型.该模型在多张人脸图像的稀疏表示矩阵上,利用动态数集得到联合动态稀疏表示矩阵,识别多图像的人脸.在多张人脸图像作为测试样本的情况下,利用多图像之间的关联性提高人脸图像识别的准确率.最后利用CMU人脸图像库对该算法进行仿真,结果表明其识别率较其他算法有很大的提高. 相似文献
2.
在信号可稀疏表示的基础上,压缩感知理论将数据的采集和压缩集于一身,从较少的观测值中重构出原始信号,突破了以奈奎斯特采样定理为基础的传统采样方式的局限性,降低了对信号采样率的要求.首先介绍了压缩感知的基本理论和各类重构算法,并在时间复杂度和重构精度上对算法作出分析比较,然后基于压缩感知理论综述图像稀疏表示和重构算法的研究进展及其相关方面的应用,最后对压缩感知在稀疏表示和重构方面作出了总结和展望. 相似文献
3.
基于单演特征和稀疏表示的人脸识别 总被引:1,自引:0,他引:1
为了使得稀疏表示分类方法具有更好的识别效果,提出了基于单演特征的稀疏表示分类(MSRC)方法.相对于Gabor特征,单演特征能够用于提取图像的相位信息,而相位信息对光照不敏感,因此MSRC方法能提高图像的光照鲁棒性.相对于Gabor特征的多尺度和多方向,单演特征能够减少特征的处理时间.实验结果表明:文中所提的方法具有使用价值,识别率和速度方面得到了一定的提升. 相似文献
4.
《南京大学学报(自然科学版)》2017,(4)
传统的匹配场处理方法存在分辨率低、抗噪性能差、不适用低快拍等问题.近年来出现了一类利用匹配场的空间稀疏性,将源定位转化为物理空间的稀疏重构的定位方法,能够实现高精度的匹配场定位.通常求解这些问题时是将l_0范数转换为l_1范数.虽然该方法能解决常规的NP-hard问题,在优化求解方面具有一定的优势,但是与直接通过l_0范数求解的方法相比,不能很好地描述空间稀疏特性,以至于难以充分体现和利用声场冗余字典的稀疏特点.因此,相比于传统的压缩感知算法,通过分析匹配场的空域稀疏特性,在学习平滑l_0范数重构算法的基础上,提出了基于平滑l_0范数的匹配场源定位方法.在分析了水下目标定位的稀疏数学模型的基础上,逐渐降低数值逼近参数的方式来得到数学模型的最优解,在保证高精度匹配场定位的同时,减少了运算的时间,提高了匹配场定位的效率. 相似文献
5.
当训练和测试图像同时受到污损时,人脸识别的性能会急剧下降。为了解决这一问题,提出了一种新的人脸识别算法。首先利用鲁棒主成分分析(robust principal component analysis,RPCA)方法得到训练样本的低秩部分;然后基于原始训练样本及其低秩部分得到低秩投影矩阵,该矩阵可以对存在污损的测试图像进行恢复;最后使用稀疏表示分类(sparse representation based classification,SRC)算法对恢复后的测试图像进行分类。在两个公开数据库上进行实验,实验结果证明了本文算法的有效性,同时识别性能优于SRC及线性回归分类(linear regression classification,LRC)方法,能在一定程度上处理样本数据受到污损的情况。 相似文献
6.
为消除非受控训练环境中光照/表情变化的不利影响,控制部分遮挡/伪装对人脸图像的破坏程度,提出了一种基于低秩矩阵恢复的字典优化设计,以增强稀疏表示人脸识别的性能.首先对存在非受控干扰成分的训练字典进行低秩矩阵恢复,获得相对"干净"的训练图像进行特征提取;接着采用分块相似性先验嵌入稀疏编码的方法实现对人脸图像的分类.实验结果表明,通过改进稀疏编码字典的鉴别能力,系统能更有效地抑制光照、表情、遮挡/伪装的影响,其识别的稳健性和鲁棒性得到了明显提升. 相似文献
7.
针对现有方法在哈希函数构造过程中没有考虑数据的稀疏结构,提出了一种基于稀疏重构的哈希函数学习方法。利用相似点的l_(21)范数对重构系数进行了稀疏约束,以增强局部保持映射过程中的判别性,并构建拉普拉斯矩阵进行局部邻域关系的约束,在调和协方差矩阵和最小化数据的重构误差间建立了一种平衡机制。从特征所在的空间与经映射后的汉明空间的可判别性角度出发,对哈希函数构造过程中的内在要求和约束同时进行了考虑并综合权衡。采用公共图像检索数据集Caltech-256进行实验,实验结果表明:32位编码长度时,本文算法的检索精度比其他无监督的深度哈希算法至少提高了4.69%。 相似文献
8.
为了解决稀疏信号的重建问题提出了光滑e0范数优化算法,它与最小1范数优化算法等图像重建的方法相比有很大的不同,着重实验了这种信号重建算法中重要参数的选择,并利用手写体数字图像库为试验样本做了一维信号重建和二维图像重建实验.实验结果证明了基于e0范数优化算法在图像重建时间和重建精度上的优越性,此为后续的图像工程研究奠定了基础. 相似文献
9.
稀疏表示人脸识别算法的主要思想是:一个未知的测试图像可以近似表示为所有与其隶属同类的训练样本的一个线性组合.然而,人脸之间存在着极大的相似性,同时易受到外部环境的影响,人脸分类的本身存在着一定的不确定性.针对这种不确定性,结合模糊集合理论,提出了一种新的模糊稀疏表示人脸识别算法.首先,引入一个非线性函数描述人脸的相似性程度.然后,基于该相似性度量以及最近邻分类器思想,定义一个自适应的模糊隶属度函数来分配人脸对类的隶属程度.而这一过程恰使得这些隶属度是稀疏化的.最后,将稀疏化的模糊隶属度作为训练样本表示测试样本的权值系数,进而重构测试图像.采用MATLAB在ORL和Yale人脸数据库上进行仿真实验,验证了该算法的有效性和稳定性. 相似文献
10.
提出了一种全新的基于视觉显著度和上下文稀疏分解的图像超分辨率算法。利用人眼视觉感知显著的区域往往趋向于高度结构化的特性,字典学习和稀疏分解过程中可以捕获更多细节特征。在字典学习部分,视觉显著区域提取出的图像样本用来训练显著字典。在先验模型的部分,由于视觉显著区域通常趋于高度结构化,基于上下文的稀疏分解被用来进一步探索相邻图像块之间的联系。实验结果表明,所提出的方法在性能上优于其他最新的方法,峰值信噪比(PSNR)增益最大。主观结果也显示,所提出的方法可以有效减少假影现象,并保持更多细节。 相似文献
11.
针对无线传感器网络中的数据收集问题,基于压缩感知理论设计并实现了一种高效节能的数据收集方案.数据采集时利用矩阵投影对传感器节点感知的数据进行压缩,数据重构时利用指数函数族对l0范数进行逼近,从而将带约束条件的l0范数最小化问题转化为无约束条件的优化问题,同时还设计了相应的加权函数,从而进一步提高重构算法的收敛速度.实验结果表明:所设计的基于近似l0范数重构算法的传感网数据收集方案在数据收集过程中具有较高的运行效率,其对无线传感器网络的带宽、能量等资源消耗较低;在数据重构过程中能够在适当的重构时间内进一步提高压缩数据的重构成功率. 相似文献
12.
姿态鲁棒的分块稀疏表示人脸识别算法 总被引:1,自引:0,他引:1
针对稀疏表示人脸识别算法对姿态变化敏感的问题,提出一种姿态鲁棒的分块稀疏表示人脸识别算法,通过对人脸进行分块表示并利用仿射变换模型对姿态变化建模,提高稀疏表示人脸识别算法对姿态变化的鲁棒性.同时,通过最小化图像分块重构误差来估计仿射变换参数初值,有效提高仿射变换参数估计精度,进而提升人脸识别算法的性能.实验结果表明,本文算法可在一定程度上克服姿态变化造成的对齐误差,比现有相关算法具有更好的姿态鲁棒性和识别性能. 相似文献
13.
针对训练样本图像和测试样本图像均存在光照、污染、遮挡等情况下的人脸识别问题,提出一种基于鲁棒主成分分析的群稀疏表示人脸识别方法(group sparse representation face recognition method based on robust principal component analysis, GSR-RPCA)。该方法将人脸图像由空域变换到对数域,增强人脸图像的对比度,并通过结构非相关鲁棒主成分分析算法从训练样本图像矩阵D中分解出干净的低秩部分人脸图像矩阵A和误差图像矩阵E,以增强恢复数据的鉴别力;学习A与D之间的低秩映射关系矩阵P,并用P将存在遮挡的测试样本映射到其潜在的子空间下,得到干净的测试样本y;计算y在A上的群稀疏表示系数,并利用类关联重构残差对测试人脸进行识别,获得测试人脸的所属类别。在CMU PIE,Extended Yale B和AR数据库上的实验结果显示,提出方法具有较高的识别率和较强的鲁棒性。 相似文献
14.
KPCA是重要的非线性特征提取的人脸识别方法,但对较大规模训练数据库,会因核矩阵K过大,计算代价高而不能有效实现,并且使用传统欧式距离度量很难大幅提升识别率。本研究提出了将基于QR分解的PCA推广到KPCA上且应用p范数度量来解决这一问题的方法,即:首先采用选主元的Cholesky分解得到核矩阵K的低秩近似,然后对小规模矩阵H进行QR分解,经过一些推导得到中心化核矩阵的特征向量,实现了KPCA的非线性特征提取,在分类识别阶段,本研究突破传统欧氏距离度量的局限,将p范数作为度量相似性的方法,在ORL和AR人脸数据库中做了大量相关实验,并且分别研究了p的取值对基于QR分解的主成分分析(QR-PCA)和核主成分分析(QR-KPCA)算法的识别率的影响,实验结果表明,这种p范数意义下的QR-KPCA处理人脸识别问题有很高的识别率。 相似文献
15.
随着计算机技术和三维成像技术的发展,三维人脸识别因不易受光照、装扮变化的影响成为人脸识别和身份验证的新趋势,但是对于表情、姿态变化其识别率还是有待于改善,时间开销较长.本文提出基于稀疏表示原理,对人脸重要的特征鼻尖点进行提取,采用最近邻分类器进行分类识别.实验结果表明,对表情变化等具有较高的鲁棒性和识别效果,且时间开销极小,优于传统的三维人脸识别方法. 相似文献
16.
《哈尔滨商业大学学报(自然科学版)》2017,(1)
稀疏表示和非局部相似性在图像去噪领域扮演着越来越重要的角色,并且取得了很好的去噪效果.解决了高斯噪声和椒盐噪声混合的图像去噪问题.在去噪过程中,如何更好地保留图像中原有的边缘信息是一个很重要的问题.为此提出了在稀疏表示和非局部相似性的基础上,引入Sobel算子的算法.实验结果表明,该算法去噪效果突出,并且能够在去噪的同时保留图像的边缘信息,为去除图像中的混合噪声提供了一种有效的方法. 相似文献
17.
基于超完备字典稀疏表示的图像复原利用字典的冗余性能够有效地恢复出图像的结构特征,但由于使用字典稀疏表示时需要对整幅图像进行分块处理,导致复原后的图像块之间重构图像常出现"伪像"效应。针对这一问题,本文将图像梯度稀疏统计特性作为先验知识加入稀疏表示图像盲去模糊模型中,提出了一种基于字典稀疏表示和梯度稀疏的图像盲去模糊算法,同时分析了算法的整体优化求解方法。实验分析和结果表明,本文算法能在一定程度上去除图像块之间的"伪像"效应,保持图像的结构特征和整体平滑。本文算法的去模糊图像在峰值信噪比和视觉效果两方面均有显著提高。 相似文献
18.
针对合成孔径雷达(synthetic aperture radar,SAR)图像可视性差、目标区域小以及特征不明显等特性对目标检测造成的困难,将稀疏表示模型应用于SAR图像目标检测,提出一种基于稀疏表示模型的SAR图像目标检测算法。首先,利用K—SVD算法训练样本提取对样本最具描述能力的SIFT特征形成字典;其次,通过将进化机制和稀疏表示结合,逐步提取整幅图像中含有目标的图像块;最后,输出稀疏表示误差小于阈值的图像块的位置作为目标检测的结果。实验结果表明,与传统目标检测算法相比,该算法在检测率和运行效率方面均有一定的提高,取得了较好的效果。 相似文献
19.
在分析人脸超分辨率算法和二维稀疏表示的基础上,提出基于二维稀疏表示的人脸超分辨率重构算法。与一维稀疏表示中将图像块转换为列向量不同,本文考虑到二维图像列与列之间的近邻关系,对图像块进行二维稀疏表示;在字典训练中,对每组图像块的每一列训练高、低分辨率字典,提出二维K-SVD算法对字典进行训练,减少字典训练消耗的时间,同时能够改善超分辨率人脸的质量。采用中科院CAS-PEAL共享人脸图像数据库进行仿真实验,实验结果从主、客观质量均验证了本文算法的有效性及先进性。 相似文献
20.
为进一步有效提升稀疏表示人脸识别系统的识别率和可靠性,在分析人脸图像稀疏表示系数分类能力的基础上,提出了一种基于残差加权的稀疏表示人脸识别新方法.该方法通过对类残差图像关于所属类稀疏表示系数的l2范数进行归一化加权,有效提升了原始基于类残差判决的识别能力.仿真实验结果表明:改进的基于残差加权的稀疏表示方法能够有效提高系统的识别性能. 相似文献