共查询到16条相似文献,搜索用时 118 毫秒
1.
在预条件矩阵Pα=(I+Sα)和Pαβ=(I+Sαβ)的基础上提出了一个新的L-矩阵预条件AOR迭代法,证明了新方法的收敛性,并通过数值试验表明了新方法的有效性. 相似文献
2.
在预条件矩阵Pα=(I+Sα)和Pαβ=(I+Sαβ)的基础上提出一个新的预条件矩阵为P^αβ=(I+S^αβ)的预条件AOR迭代法,建立了新的预条件AOR迭代法与经典的AOR迭代法的比较定理,数值试验表明预条件AOR迭代法更为有效. 相似文献
3.
张保祥 《齐齐哈尔大学学报(自然科学版)》2008,24(6)
给出了H-矩阵的预条件AOR迭代法及其收敛性,并给出了松驰因子与加速因子的选取对收敛速度的影响,同时通过数值实例验证了主要结果. 相似文献
4.
陈金雄 《云南民族大学学报(自然科学版)》2013,22(3):190-193
给出了解线性方程组Ax=b的预条件Guass-Seidel法,讨论了对于不可约的L-矩阵应用这种方法的收敛性并得到了比较定理.此外,给出了收敛最快时的系数取值.通过数值例子说明该文提出的预条件Guass-Seidel法是有效的. 相似文献
5.
考虑将预条件(I+α)应用于AOR迭代法和2PPJ迭代法,得到这两种预条件迭代法的收敛性定理,并从理论上证明了它们较原方法提高了迭代的收敛速度. 相似文献
6.
考虑线性系统Ax=b,当A为L-矩阵时,通过利用AOR迭代方法收敛的谱半径与预优AOR方法的比较,给出了在二级迭代的情况下,外迭代的R1-收敛因子更为精确的结果. 相似文献
7.
雷刚 《江西师范大学学报(自然科学版)》2007,31(6):599-602
运用矩阵分裂理论及比较定理,获得了当线性方程组系数矩阵A对角占优L-矩阵时,预条件Gauss-Seidel迭代法是常见的几类迭代法中收敛速度最快的方法.最后给出一个数值例子. 相似文献
8.
9.
对于系数矩阵为不可约的Z-矩阵的大型线性方程组,给出了一类新的预条件AOR迭代法,并证明其在给定的条件下是收敛的,数值例子证明解的有效性. 相似文献
10.
考虑将预条件(I+Sα)应用于AOR迭代法和2PPJ迭代法,得到这两种预条件迭代法的收敛性定理,并从理论上证明了它们较原方法提高了迭代的收敛速度. 相似文献
11.
滑伟 《南京工程学院学报(自然科学版)》2011,9(3):6-9
对于线性系统Ax=b,当A为L-矩阵时,通过两种预优AOR迭代方法收敛的谱半径的比较,给出在二级迭代的情况下,外迭代的JR1-收敛因子的更为精确的结果, 相似文献
12.
任孚鲛 《太原师范学院学报(自然科学版)》2008,7(3):20-22
在1991年A.D.Gunawardena等人首先提出了以I+S为预处理子的Gauss-Seidel型迭代法比基本的迭代法有较好的收敛性.文章提出以阶梯矩阵作预处理子的Gauss-Seidel型迭代法,文中给出了收敛定理并以数值例子说明文章的方法比基本的迭代法及A.D.Gunawardena等人的方法有较好的收敛率. 相似文献
13.
讨论了线性方程Ax=b的Gauss-Seidel迭代法的求解问题.2003年,A.Hadjidimos等提出了预条件矩阵I Cα.该文证明了若系数矩阵A是H矩阵,则(I Cα)A是H矩阵.并给出两个数值例子作以说明. 相似文献
14.
利用一种新的预条件矩阵讨论了预条件Jacobi迭代方法,得到了比较定理,并且揭示了预条件Jacobi迭代方法的收敛速度和参数之间的关系. 相似文献
15.
提出了一种新的预条件矩阵,并讨论了该预条件下Jacobi迭代法的收敛性,得到了比较性定理,揭示了预条件Jacobi迭代法的收敛速度和参数之间的关系。最后给出数值例子验证了该预条件迭代格式优于通常的预条件法。 相似文献
16.
目的加速SSOR迭代法的收敛性。方法运用矩阵分裂理论及比较定理进行证明。结果得到矩阵为严格对角占优L-矩阵时,预条件后能够加速SSOR迭代法的收敛速度。结论对于求解差分方法、有限元方法及科学计算中产生的线性方程组提供理论支持。 相似文献