首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了降低列车交会空气压力波、减小空气阻力、使列车具有正的气动升力,根据给定的列车横断面,设计3种磁浮列车流线型头部外形。利用可压缩粘性流体的N-S方程和k-ε双方程湍流模型,采用有限体积法对包括TR08磁浮列车在内的4种高速磁浮列车周围流场进行数值模拟,得出磁浮列车在不同运行速度下的气动阻力系数、升力系数及列车以430km/h运行时的交会压力波幅值。此外,为优化气动外形方案,对3种方案进行综合比较分析。研究结果表明:随着流线型头部长度的增加,列车空气动力性能提高;在车头流线型长度相同的情况下,随着最大纵剖面轮廓线曲率的变小,交会压力波降低,水平投影轮廓线变宽,列车阻力增加;最优方案为列车交会压力波和空气阻力均较小、流线型头部为扁梭形的方案三。  相似文献   

2.
采用三维、可压N-S方程、k-?双方程湍流模型和滑移网格技术,对不同的流线型长度、头部型线列车明线交会压力波及气动力的关系进行计算分析。研究结果表明:交会压力波头波幅值数值计算结果与实车试验结果较吻合,两者相对误差为4.9%;当列车流线型长度从8 m增大至12 m时,交会压力波、侧向力、侧滚力矩幅值分别减小27.0%,39.2%和36.2%;头部主型线中,水平剖面型线对交会气动性能的影响最大,当水平剖面型线斜率由0.076增大到0.184时,交会压力波、侧向力、侧滚力矩幅值分别增大12.1%,7.3%和8.5%;纵剖面型线对列车交会气动性能的影响较小,当斜率从0.505增大到0.713时,交会压力波、侧向力和侧滚力矩幅值分别增大1.90%,0.65%和0.89%;当横截面型线斜率从0.194增大到0.235时,交会压力波、侧向力和侧滚力矩幅值分别增大4.1%,3.1%和4.0%。  相似文献   

3.
具有流线型头部的高速磁浮列车气动性能数值模拟   总被引:4,自引:0,他引:4  
以世界上首条商业运行的上海高速磁浮列车TR08为研究对象,基于粘性流体力学理论,按三维可压缩粘性流对具有流线型头部形状的TR08列车以及根据一定规律设计出的4种新头型列车周围流场进行了数值模拟.通过对这5种不同头型列车的模拟结果进行对比分析,得出了流线型头部外形对气动性能影响的规律:随着流线型头部长度增加(其他条件相同),列车气动阻力和升力降低;在头部流线型长度相当的情况下,纵剖面轮廓线上凸的头车气动阻力比下凹的小,而尾车气动阻力大;中间车阻力变化不大,尾车升力大于头车;就整车升力而言,纵剖面轮廓线上凸的气动升力大于下凹的.  相似文献   

4.
基于三维、可压缩、非定常N-S方程和k-ε双方程湍流模型,对不同主型线头部列车隧道交会气动效应进行数值模拟,得到列车在隧道内交会时的侧向力、总阻力以及隧道壁面压力变化。研究结果表明:隧道壁面和列车表面压力测点数值计算结果与动模型实验、实车试验结果较吻合,相对误差均在5%以下;单拱型列车隧道交会气动性能略优于双拱型;纵剖面型线对列车隧道交会气动力影响较大,纵剖面型线从下凹变化到上凸,头车、中间车和尾车侧向力幅值系数分别增加11.2%,14.0%和23.7%,最大总阻力系数增加7.2%;水平剖面型线从最宽外形变化到最窄外形,头车、中间车和尾车侧向力幅值系数分别增加3.4%,2.4%和4.6%,最大总阻力系数减小4.0%;改变头部主型线对隧道壁面压力变化影响较小,最大相对误差为1.7%。  相似文献   

5.
通过对包括CRH2在内的4种不同纵向长细比比例尺为1∶8的高速列车模型进行风洞试验,分析雷诺数对车辆气动力系数的影响;比较4种高速列车模型的气动力特性;对不同流线型外形列车进行大侧偏角试验,研究高速列车在侧风作用下的安全性.研究结果表明:列车流线型头部越长,鼻形更加突出尖锐,头部流线型更加光滑,更有利于降低空气阻力;当模型列车流线型长度相差不大时,纵向长细比系数越大即车头外形越细长,对减阻越有利;4种动车组头车、中车和尾车的侧向力及升力系数均随侧滑角的增大而迅速增大;当侧滑角大于10°时,头部最大纵剖面轮廓线曲率较大的模型,横风作用下的侧向力系数比其他3种模型车的侧向力系数显著增大,升力系数较小.  相似文献   

6.
在分析准流线型动车组列车头部外形特点的基础上,对其进行了改型优化设计,措施包括加大列车细长比以及改变外部形状等.应用CATIA软件通过创建列车头部曲面的主型线、中间控制线等步骤,完成了列车流线型头部的三维曲面模型设计,同时应用曲线曲率梳工具,通过调整控制点的位置,完成了控制线的位置调整.流线型列车头部曲面的静态光顺性评价表明被测区域达到了曲面光顺的要求.应用CFD技术,采用三辆编组形式,模拟计算了两种列车在6种不同速度时的空气阻力.结果表明:与准流线列车相比,流线型列车在降低列车运行空气阻力方面效果明显.  相似文献   

7.
为探明不同线间距下600 km/h高速磁浮列车明线交会时的气动特性,基于三维、非定常、可压缩的N-S方程和SST k-ω湍流模型,采用重叠网格技术,分析列车明线交会时的车身周围流场结构、列车交会压力波和列车侧向力,通过动模型试验来验证数值模拟方法的准确性。研究结果表明:在不同线间距下,列车交会时的车身周围流场分布特征相似,随线间距增大,列车尾涡展向角逐渐增大,两交会侧车身之间流场的速度和压力不断减小;不同线间距下的列车压力波变化规律一致,压力波幅值与列车运行速度的二次方近似呈正比,当线间距由5.1 m分别增大至5.6 m和6.1 m时,压力波幅值分别减小28.2%和42.4%,且增大线间距对列车压力波正波缓解作用比负波的大,头波的缓解作用比尾波的大;列车交会过程中头车侧向力幅值比尾车和中间车的幅值大,增大线间距对尾车侧向力的缓解作用比头车和中间车的大,当线间距由5.1 m增大至6.1 m时,头车、中间车和尾车的侧向力幅值分别减小33.8%、34.1%和35.7%。  相似文献   

8.
在合武(合肥—武汉)铁路上进行250km/h等级隧道空气动力性能实车试验;对货物列车单列过隧道及货物列车与CRH2高速动车组在隧道内交会时,集装箱箱体表面的压力变化历程及所受的气动力进行测试。测试结果表明:当2列车在隧道内交会时,交会压力波与隧道内的压力波叠加,造成隧道内列车交会产生的压力变化幅值远大于明线交会产生的压力变化幅值;车体交会侧压力变化幅值比非交会侧压力变化幅值大16%,使得车辆受到较大侧向力作用;双层集装箱车辆进入隧道口时,空气压差阻力急剧上升,之后又逐渐回落;在隧道内运行的平均阻力约为明线运行时阻力的1.56倍,货物列车120km/h和动车组250km/h在大别山隧道和鹰嘴石隧道内交会时,双层集装箱车由气动力引起的最大2s平均倾覆系数分别为0.063和0.067。  相似文献   

9.
200 km/h动车组交会空气压力波试验   总被引:1,自引:1,他引:1  
为确定我国200 km/h动车组与准高速列车交会空气压力波的大小,从而为动车组安全评估提供依据,在广深线上利用瞬态压力测试系统,对其列车交会空气压力波性能进行测试,并对测量结果进行综合分析.研究结果表明在线间距为4 m、动车组运行速度为200 km/h(准高速列车速度为160 km/h)时,准高速列车所受到的压力波幅值为1*!568 Pa,而动车组承受的压力波幅值在1*!400 Pa左右;列车头部外形对列车交会压力波幅值有较大影响,控制车外形流线化程度比动力车的流线化程度好,控制车对准高速车造成的压力冲击波幅值小于动力车造成的压力冲击波幅值;对于目前使用的准高速车辆,动车组以200 km/h的速度与之交会运行是安全的.  相似文献   

10.
快速集装箱平车在明线和隧道内会车时的气动性能   总被引:1,自引:0,他引:1  
利用三维、可压、非定常N-S方程,采用滑移网格技术对我国正在研制的160 km/h快速集装箱专用平车与动车组分别在明线和隧道内会车时的气动性能进行数值模拟.研究结果表明:集装箱平车以160 km/h的速度与动车组等速交会时,在隧道内会车时车载集装箱中部压力变化幅值是在明线会车时的3.46倍;在明线和隧道内会车时,集装箱列车受到的侧向力和侧滚力矩均与交会列车运行速度近似成平方关系;因隧道内压力分布一维特性较强,集装箱平车交会侧与非交会侧压力相差并不大,因此,在明线会车时集装箱平车受到的侧向力和侧滚力矩均比隧道会车时的大,大约是其1.1倍.  相似文献   

11.
采用移动网格原理对列车明线交会的空气动力学特性进行了数值模拟.修正了Steinheur经验公式,并给出了等速交会的列车表面压力波波幅的新计算公式.研究表明:交会列车低速时对应的压力波幅值小于高速时的幅值;波幅与交会速度、交会侧间距和监测点的高度有关,并近似与列车运行速度的平方成正比;交会侧间距越小,波幅越大;在其他条件不变的情况下,交会侧间距比高度对压力波幅的影响大.  相似文献   

12.
针对横风下高速列车在洞口交会时的非定常气动问题,考虑流场的三维、可压缩、湍流特性,建立隧道-列车三维空气动力学模型,利用滑移网格技术模拟列车交会过程,采用SSTκ-ω湍流模型对列车交会全过程进行求解,研究横风对隧道内瞬变压力、列车风及流场分布特性的影响规律.研究结果表明:横风下列车交会时,洞口处气动压力系数变化幅值显著增大,交会完成时,列车之间压力系数峰-峰值较无横风情形增大30.6%;列车交会开始和完成时气动压力均发生突变,隧道中部附近气动压力峰值最大;横风下列车交会气动压力大小与空间位置有关,交会时列车间气动压力变化幅值分别是列车迎、背风侧压力变化幅值的2.2和1.5倍;横风对洞口附近列车风影响显著,横风时迎风侧列车风峰值最大,无横风时背风侧列车风峰值最大,且前者是后者的2.04倍;隧道内气动效应受横风影响范围有限,当横风为30 m/s、车速为350 km/h时,隧道内气动效应受影响范围为120 m;横风下交会开始与完成时,流场分布急剧变化,导致气动压力与列车风发生突变.  相似文献   

13.
为研究桥上动车组穿越复杂峡谷地形时的横风气动特性,本文以CRH6型动车组为研究对象,基于三维、粘性、不可压缩的N-S方程和k-ε湍流模型,采用滑移网格技术,耦合高架桥、横风和车速,计算复杂三维峡谷地形下动车组的气动载荷.研究结果表明:列车表面压力在流线型头部有显著变化,压力最大值出现在列车头部鼻端点区域;随着车速和横风...  相似文献   

14.
搭建列车空气动力学在线实车高精测试平台,对列车通过隧道及隧道交会工况下的压力波特性进行实车测试;探究运行速度、隧道长度、阻塞比、编组长度、交会位置等因素对隧道压力波的影响规律;根据隧道内压缩波、膨胀波在隧道内传播、反射、叠加的原理,推导出隧道通过及隧道交会工况下,最不利单线隧道长度、最不利双线隧道长度、最不利交会位置、最不利编组长度等计算公式。研究结果表明:车体表面压力变化幅值与列车速度的平方成正比;车内压力幅值与列车速度的n次方成正比,n的范围为1.3~1.8,n随着隧道长度的变化而变化;研究结果可为高速列车在隧道内运行时的安全性指标提供了压力波评判依据。  相似文献   

15.
隧道内货车篷布绳索拉力实车测试与分析   总被引:1,自引:0,他引:1  
针对D型与X型篷布的有绳网和无绳网4种不同装载与加固方案,在不同时速下进行货车过隧道时篷布绳索拉力测试和全程跟踪监控摄像的实车试验.研究结果表明:篷布迎风面端部两侧晃动较大,背风面兜风严重;有网篷布顶部在隧道内起伏较小,无网篷布顶部起伏较大,速度较高时起伏明显加大;列车进隧道时篷布绳索受力突然增大,在隧道中逐渐减小,在隧道出口恢复明线水平;随着列车速度的提高,绳索受力逐渐增大;当列车速度为120 km/h时,D型篷布绳索最大拉力为609 N,X型篷布最大拉力为722 N;在相同工况下,D型篷布使用性能优于X型篷布的使用性能;篷布绳网在降低篷布绳索拉力中发挥了重要作用,有绳网篷布绳索受到的平均拉力比无绳网篷布受到的平均拉力小20%~60%.  相似文献   

16.
通过计算流体力学方法,采用动态分层模型,对二维列车隧道交会问题进行数值模拟并结合图表探讨了最不利隧道长度问题.结果表明,相应于瞬变压力急剧程度,车头、车尾测点的最不利压力叠加分别发生在隧道列车长度比为3和4.5时.不同隧道长度下,测点压力最大值的变化不如测点压力最小值的变化明显,隧道交会过程中通常是负压起主导作用.  相似文献   

17.
高速列车不同头部形状的气动性能研究   总被引:1,自引:0,他引:1  
就几种典型形状列车车头,在简化列车外形的情况下,针对高速列车不同运行速度下的气动阻力和升力进行计算.为计算阻力和升力系数,将三维雷诺平均化N-S方程(RANS)结合k-ε湍流模型,用有限体积法(FVM)将控制方程离散求解.用SIMPLE法耦合压力-速度场,通过解类Poisson方程,对压力迭代地修正.模拟计算结果显示采用向首部有收缩的头部形状可获得较好的空气动力学性能;综合考虑与权衡稳定性与机动性,在更高速情况下运行的列车宜优先采用向首部有收缩的头部形状.图7,参12.  相似文献   

18.
基于列车纵向动力学理论,充分考虑列车的空气制动与动力制动特性,建立了重载列车纵向动力学模型。以2台SS4B型电力机车牵引万吨重载列车为例,仿真分析了空电联合制动工况下列车管减压量对列车纵向动力学性能的影响。结果表明:列车降速距离与降速时间均随列车管减压量的增大而减小,而列车增速距离与增速时间则随列车管减压量的增大而增大;列车管减压量对列车最大拉钩力的影响不明显,而列车最大压钩力则随列车管减压量的增大而显著增大,当列车管减压量从50k Pa增加至70k Pa时,最大拉钩力仅减小了5.9%;而最大压钩力则增加了20.1%。  相似文献   

19.
为抑制水力机械中水翼绕流流场空化的形成和发展,通过对比分析NACA0009、NACA0012以及Clark Y 3种经典水翼不同攻角和空化数工况下的性能,获得型线优化思路,建立了新水翼。进一步地,在新水翼上布设多个流动控制结构,通过广义模式搜索算法进行快速优化设计,对空化流场进行整体控制和局部调控。研究结果表明:新水翼吸力面凸起高度介于NACA0012和Clark Y水翼之间,最大凸起高度位置后移;新水翼的空化性能和水动力性能提升,升阻比最大提高48.8%,空泡脱落和回射流发展得到抑制;在新水翼吸力面均匀布设的多个控制结构能够对回射流起到连续抑制作用,改善压力分布;通过优化算法实现了控制结构设计的精准快速寻优,优化后的水翼性能得到了进一步提升,升阻比继续提高4.8%~13.6%,空化厚度与长度减小。型线优化和添加连续流动控制结构实现了空化流场的整体和局部控制,是提高水翼的空化和水动力性能的有效方法。  相似文献   

20.
针对高速列车全速通过地下车站时所引起的瞬变压力问题,采用列车气动性能动模型试验装置,对8编组高速列车以速度300 km/h通过地下车站时的气动效应进行模拟,分析车站内设有竖井时列车表面、站台屏蔽门表面压力分布特性以及竖井面积对瞬变压力的影响。研究结果表明:当高速列车通过设置有竖井的地下车站时,列车表面、屏蔽门表面左右对称测点压力变化趋势基本一致,压力幅值相差不大;屏蔽门表面压力幅值沿纵向逐渐增大,沿高度方向则变化不大;随着竖井面积增大,列车、屏蔽门表面测点压力幅值均不断下降,相较于无竖井工况,列车表面测点压力幅值最大可降低48.87%,屏蔽门表面测点压力幅值最大可降低71.07%,其中,当竖井面积与隧道面积之比超过0.26时,进一步增大竖井面积,竖井对列车表面、屏蔽门表面的压力幅值的影响不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号