首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Much attention has been paid to leaf shape of rice in the process of ideotype breeding[1]. Several authors have reported that the rolling of leaf in some degree helps keep it erect, consequently optimizing canopy light transmission condition, which is good for dry matter accumulation and for high yield[2―6]. Rice as a polymorphic crop has many types of vari- ety with different morphologies. In terms of leaf shape, different cultivars with rolling leaf have been identifiedin rice germplasm. Le…  相似文献   

2.
Quantitative trait loci (QTLs) controlling salt-tolerance at the seedling stage in rice (Oryza sativa L.) were identified by interval mapping (SIM) and composite interval mapping (CIM) using a doubled haploid population ZJDH and its high resolution genetic linkage map. The population was derived from an inter-subspecific cross between an indica variety Zhaiyeqing8 (ZYQ8) and a japonica variety Jingxi17 (JX17). Analysis of survival days of seedlings treated with 0.7% NaCI revealed that a major salt-tolerance quantitative trait locus (QTL), Std, was present between markers RG612 and C131 on chromosome 1 when using both MAPMAKER/QTL 1.1 and PLABQTL 1.0 (SIM). Its allele which contributes to salt-tolerance was from ZYQ8. In addition, seven more QTLs which give additive effect on salt-tolerance are identified when using PLABQTL (CIM), and most of them were from JX17.  相似文献   

3.
利用分子标记检测技术,对9种参加2020年上海市水稻区域试验的品种和2种本课题组新培育的新品系的共10个抗稻瘟病基因位点进行了检测.结果显示,Pi37,Pi41,Pi-d23个基因在11种水稻中出现的频率达100%,Pi2,Pi5,Pi9,Pi36,Pikm和Pib抗性基因在11种水稻中出现的频率分别为18.18%,9...  相似文献   

4.
A narrow leaf mutant was obtained after T-DNA transformation conducted on a rice variety Zhonghua 11. Several abnormal morphological characteristics, including semi-dwarf, delayed flowering time, narrow and inward rolling leaves, and lower seed-setting, were observed. The rate of net photosynthesis (under saturate light) of flag leaves in the mutant was significantly lower than that of the wild type. Moreover, the leaf transpiration rate and stomatal conductance in the mutant flag leaf were lower than those of the wild type at the grain filling stage. It was found that the mutant phenotype was not caused by the T-DNA insertion. Genetic analysis showed that the mutant was controlled by a single recessive gene, designated as nal3(t). A genetic linkage map was constructed using a large F2 mapping population derived from a cross between nal3(t) and an indica variety Longtefu B with 6 polymorphic markers on chromosome 12 identified from 366 SSR markers by the BAS method. Gene nal3(t) was mapped between the markers RM7018 and RM3331. Fine mapping of nal3(t) locus was conducted with 22 newly developed STS markers based on the sequence diversity around the region harboring nal3(t) between Nipponbare and 93–11, and nal3(t) was finally mapped to a 136-kb region between the STS markers NS10 and RH12-8. Supported by National High Technology Research and Development Program of China (863 Program) (Grant No. 2006AA10A102), National Natural Science Foundation of China (Grant No. 30600349) and Natural Science Foundation of Zhejiang Province (Grant No. Y306149)  相似文献   

5.
以优质常规稻佳辐占为父本,分别以广陆矮4号和明恢86为母本,构建两个重组自交系(以下简称为“广佳”群体和“明佳86”群体).利用559对简单重复序列(SSR)引物对亲本进行多态性分析,获得佳辐占和广陆矮4号、佳辐占和明恢86亲本间有差异的引物分别201对和186对,多态率分别达35.95%和33.33%.利用这些引物构建了两张水稻遗传图谱,其中广佳图谱包含127对SSR标记,全长约1 015.7 cM,平均标记间距为8 cM;明佳86图谱包含131对SSR标记,全长约1 263.6 cM,标记平均间距为9.6 cM.遗传图谱的构建便于研究佳辐占优质性状的遗传规律、外观品质性状间的内在关系,以期为分子标记辅助选育细长、大粒、优质的水稻新品种打下基础.同时,这是两个基于重组自交系的图谱,可长期用于群体内各种性状的遗传规律分析及QTL定位.  相似文献   

6.
Using F2 population derived from the cross of tall inbred 7922 by dwarf inbred 5003, an RFLP linkage map of maize has been constructed, on which 85 markers are distributed among 10 linkage groups and span maize genome about 1827.8 cM with an average distance (24.4 cM) between markers. 106 F2:3 lines of the population were grown in a 10 × 11 simple rectangular lattice design of one-raw plots with two replications and evaluated for plant height (PH). With interval mapping procedure, 5 QTLs controlling plant height have been identified and their genetic effects and gene action determined. 2 major QTLs with opposite effect have been discovered. One for increasing plant height isph1 which is located at chromosome 2 and accounts for 51.8% of the total phenotypic variation; the other for decreasing plant height isph3 which is located at chromosome 5 and accounts for 38.6% of the total phenotypic variation. The chromosomal location ofph3 might be the same as or close to the position ofbv1, a dwarf mutant of maize.  相似文献   

7.
A rice male-sterile mutant OsMS-L of japonica cultivar 9522 background, was obtained in M4 population treated with ^60Co γ-Ray. Genetic analysis indicated that the male.sterile phenotype was controlled by a single recessive gene. Results of tissue section showed that at microspore stage, OsMS-L tapetum was retarded. Then tapetal calls expanded and microspores degenerated. No matured pollens were observed in OsMS-L anther locus. To map OsMS-L locus, an F2 population was constructed from the cross between the OsMS-L (japonica) and LongTeFu B(indica). Firstly, the OsMS-L locus was roughly mapped between two SSR markers, RM109 and RM7562 on chromosome 2. And then eleven polymorphic markers were developed for further fine fine-mapping. At last the OsMS-L locus was mapped between the two lnDel markers, Lhsl0 and Lhs6 with genetic distance of 0.4 cM, respectively. The region was delimited to 133 kb. All these results were useful for further cloning and functional analysis of OsMS-L.  相似文献   

8.
A rice initiation-type lesion mimic mutant (lmi) was identified, which was isolated from an indica rice Zhongxian 3037 through γ radiation mutagenesis. Trypan blue staining and sterile culture revealed that the mutant spontaneously developed lesions on the leaves in a developmentally regulated and light-dependent manner. Genetic analysis indicated that the lesion mimic trait was controlled by a single resessive locus. Using public molecular markers and an F2 population derived from lmi and 93-11, we mapped the lmi locus to the short arm of chromosome 8, nearby the centromere, between two SSR markers RM547 and RM331. The genetic distance was 1.2 and 3.2 cM, respectively. Then according to the public rice genomic sequence between the two SSR markers, lmi was further finely tagged by three CAPS markers: C4135-8, C4135-9 and C4135-10. And lmi locus was a co-segregated with marker C4135-10, providing a starting point for lmi gene cloning.  相似文献   

9.
Bulked segregant analysis (BSA) of a BC, population derived from Congguang 41A//Miyang 23/Congguang 41B was used to map the nuclear fertility restorer gene for Honglian (HL) cytoplasmic male sterility. One hundred and fifty-nine microsatellite primer pairs were screened for polymorphisms between the parents and between two bulks representing fertile and sterile plants. One microsatellite marker RM258 produced polymorphic products. The nuclear fertility restorer gene for HL cytoplasmic male sterility was mapped on chromosome 10, 7.8cM from RM258. The restorer gene may be clustered on chromosome.  相似文献   

10.
分子标记辅助选育香型软米水稻“上师大18号”   总被引:1,自引:0,他引:1       下载免费PDF全文
以香型软米水稻"青香软粳"作为软米基因供体亲本,以香型非软米水稻"光明粳2号"作为转育亲本,结合软米基因分子标记辅助筛选,成功培育出香型软米水稻"上师大18号"."上师大18号"水稻全生育期约148 d,早于"青香软粳"水稻约5 d."上师大18号"水稻主要农艺性状和产量性状都与"光明粳2号"接近."上师大18号"稻米直链淀粉质量分数为8. 2%,符合软米特征."上师大18号"水稻的成功选育有助于上海地区推广生育期相对较短的香型软米水稻.  相似文献   

11.
红米因其独特的营养价值日益受到人们关注.红米由两对非同源染色体上的Rc、Rd显性基因控制,且Rc、Rd基因同时存在时,水稻才表现为红米表型.本研究分别在Rc和rc等位基因以及Rd和rd等位基因影响性状的关键性位点上建立了分子标记:Rc(+5150)和Rd(+276).检测结果显示:这2个分子标记可以分别用来区别控制红米性状的Rc/rc和Rd/rd基因型.开展本研究,为今后利用分子标记辅助快速有效地选育各类红米水稻新品种研究提供了重要的帮助.  相似文献   

12.
Public concern is often expressed at cultivars because the domestication and modern plant breeding have led to a reduction in the genetic diversity of crops and loss of genes, which could result in crops' genetic vulnerability to changes in the spectrum of pestssity of varieties in this zone is very important to the whole rice production in China. REZV, a important japonica rice production areas with more than 278 thousands ha rice which was about 71% of rice area in north China, accounted fo…  相似文献   

13.
在60Coγ射线辐照的水稻突变体库中,发现了一个以粳稻品种日本晴为遗传背景的幼苗叶色黄化突变体syl11(seedling yellow leaf 11).与野生型相比,突变体幼苗第二和第三叶表现黄色,在其完全展开之前叶片自其顶端开始转绿,长到四叶期其叶色恢复正常;并且该突变体syl11幼苗黄色叶片光合色素含量明显下降.遗传分析表明,该突变体的遗传性状由1对隐性核基因控制.本研究以培矮64S/syl11的F2代突变型植株作为定位群体,应用微卫星(SSR)分子标记以及新发展的InDel分子标记,将基因syl11定位在水稻第11号染色体长臂上的RM26652和处于着丝粒附近的ID11974分子标记之间,其遗传距离分别为0.5 cM和0.7 cM.  相似文献   

14.
从DNA甲基化、组蛋白修饰的形成条件及其作用机制等方面,对表观遗传学的一些常见的发生机制进行了简要综述,并对表观遗传在水稻中研究的前景作了展望.  相似文献   

15.
An F2 population developed from theXa-4 near isogenic lines, IR24 and IRBB4, was used for fine mapping of the rice bacterial blight resistance gene,Xa-4. Some restriction fragment length polymorphism (RFLP) markers on the high-density map constructed by Harushima et al. and the amplified DNA fragments homologous to the conserved domains of plant disease resistance (R) genes were used to construct the genetic linkage map around the geneXa-4 by scoring susceptible individuals in the population.Xa-4 was mapped between the RFLP marker G181 and the polymerase chain reaction (PCR) marker M55. The R gene homologous fragment marker RS13 was found co-segregating withXa-4 by analyzing all the plants in the population. This result opened an approach to map-based cloning of this gene, and marker RS13 can be applied to molecular marker-assisted selection ofXa-4 in rice breeding programs.  相似文献   

16.
利用6对微卫星引物对贵州马铁菊头蝠的等位基因频率、基因杂合度和多态性信息含量进行了遗传检测。结果表明,6对微卫星引物共扩增出18个等位基因。基因频率分布在0.021 0~0.833 0之间。6个微卫星位点的平均杂合度为0.342 7,平均多态性信息含量为0.381 3。分析认为贵州马铁菊头蝠遗传多样性相对较低。  相似文献   

17.
The fragile rice mutant was isolated from an M2 population of indica variety Shuang Ke Zao (SKZ) treated with g-rays, and designated as fp1 (fragile plant 1) because of its fragile leaves and culms. To map FP1 locus, an F2 mapping population was derived from a cross between the fp1 and C-bao, a polymorphic japonic variety. The primary mapping result places the FP1 locus in an interval between two molecular markers, microsatellite marker RM16 (3.1 cM proximal to FP1) and STS marker G144a (9.1 cM distal to FP1) in the centromere region of chromosome 3. A CAPS marker C524a was further developed between RM16 and G144a, with 0.4 cM genetic distances to the FP1locus, providing a practical starting point for constructing a BAC contig spanning the FP1 locus and cloning the fp1 gene. Allelism test demonstrated that fp1 is allelic to bc1, a fragile rice mutant reported previously.  相似文献   

18.
经60Coγ诱变处理粳稻嘉花1号得到一个稳定遗传苗期白化致死突变体asl6(albino seedling lethality 6).与野生型(WT)相比,该突变体从发芽出苗起一直表现白化,四叶期逐渐死亡,叶合色素含量几乎没有且没有完整的叶绿体结构.通过qRT-PCR分析发现,与叶绿体发育、叶绿素合成及光合作用相关的基因表达量明显下调.对利用asl6突变体与培矮64S杂交获得的F2代分离群体进行遗传分析,发现该突变表型受单个隐性核基因控制.利用图位克隆技术将该asl6基因定位于第2号染色体的InDel分子标记ID31982与SSR分子标记MM5712之间约293 kb的区域内.目前,该范围内没有叶色相关基因的报道,可能为一新的调控水稻叶绿体发育的基因.  相似文献   

19.
对粳稻嘉花1号经~(60)Coγ诱变处理获得的稳定遗传低温敏感叶色突变体tcm11(thermo-sensitive chloroplast mutant 11)进行了表型鉴定与遗传分析.在20℃条件下,该突变体三叶期之前幼苗均表现为黄色,光合色素含量明显下降,叶绿体发育不完整,从第4叶开始逐渐转为浅黄绿色直至最后死亡.而在32℃条件下,其表型与野生型相比没有明显差异,具有低温敏感属性.通过对培矮64S与tcm11杂交的F_2代分离群体进行遗传分析,发现该低温敏感突变体性状是受单个隐性核基因(tcm11)控制,利用图位克隆技术对tcm11进行定位,将其定位在第11号染色体的InDel分子标记ID13252与SSR分子标记MM1361之间一个约1 566 kb的区域内.这也为后续的研究奠定了基础.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号