首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Escherichia coli penicillin-binding protein PBP3 is a key element in cell septation. It is presumed to catalyse a transpeptidation reaction during biosynthesis of the septum peptidoglycan but, in vitro, its enzymatic activity has only been demonstrated with thiolester analogues of the natural peptide substrate. It has no detectable transglycosylase activity with lipid II as substrate. This tripartite protein is constructed of an N-terminal membrane anchor-containing module that is essential for cell septation, a non-penicillin-binding (n-PB) module of unknown function and a C-terminal penicillin-binding (PB) module exhibiting all the characteristic motifs of penicilloyl serine transferases. The n-PB module, which is required for the folding and stability of the PB module, may provide recognition sites for other cell division proteins. Initiation of septum formation is not PBP3-dependent but rests on the appearance of the FtsZ ring, and is thus penicillin-insensitive. The control of PBP3 activity during the cell cycle is briefly discussed.  相似文献   

2.
Resistant penicillin-binding proteins   总被引:8,自引:0,他引:8  
Low-affinity penicillin-binding proteins (PBPs), which participate in the β-lactam resistance of several pathogenic bacteria, have different origins. Natural transformation and recombination events with DNA acquired from neighbouring intrinsically resistant organisms are responsible for the appearance of mosaic genes encoding two or three low-affinity PBPs in highly resistant strains of transformable microorganisms such as Neisseria and Streptococcus pneumoniae. Methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococcal strains possess the mecA determinant gene, which probably evolved within the Staphylococcus genus from a closely related and physiologically functional gene that was modified by point mutations. The expression of mecA is either inducible or constitutive. A stable high-level resistant phenotype requires the synthesis of a normally constituted peptidoglycan. Enterococci have a natural low susceptibility to β-lactams related to the presence of an intrinsic low-affinity PBP. Highly resistant enterococcal strains overexpress this PBP and/or reduce its affinity.  相似文献   

3.
Penicillin-binding proteins (PBPs) are membrane proteins involved in the final stages of peptidoglycan synthesis and represent the targets of beta-lactam antibiotics. Enterococci are naturally resistant to these antibiotics because they produce a PBP, named PBP5fm in Enterococcus faecium, with low-level affinity for beta-lactams. We report here the crystal structure of the acyl-enzyme complex of PBP5fm with benzylpenicillin at a resolution of 2.4 A. A characteristic of the active site, which distinguishes PBP5fm from other PBPs of known structure, is the topology of the loop 451-465 defining the left edge of the cavity. The residue Arg464, involved in a salt bridge with the residue Asp481, confers a greater rigidity to the PBP5fm active site. In addition, the presence of the Val465 residue, which points into the active site, reducing its accessibility, could account for the low affinity of PBP5fm for beta-lactam. This loop is common to PBPs of low affinity, such as PBP2a from Staphylococcus aureus and PBP3 from Bacillus subtilis. Moreover, the insertion of a serine after residue 466 in the most resistant strains underlines even more the determining role of this loop in the recognition of the substrates.  相似文献   

4.
Gramicidin S and polymyxins are small cationic cyclic peptides and act as potent antibiotics against Gram-negative and Gram-positive bacteria by perturbing integrity of the bacterial membranes. Screening of a natural antibiotics library with bacterial membrane vesicles identified gramicidin S as an inhibitor of cytochrome bd quinol oxidase and an alternative NADH dehydrogenase (NDH-2) and polymyxin B as an inhibitor of NDH-2 and malate: quinone oxidoreductase. Our studies showed that cationic cyclic peptide antibiotics have novel molecular targets in the membrane and interfere ligand binding on the hydrophobic surface of enzymes. Improvement of the toxicity and optimization of the structures and clinical uses are urgently needed for their effective application in combating drug-resistant bacteria.  相似文献   

5.
Staphylococci have two mechanisms for resistance to β-lactam antibiotics. One is the production of β-lactamases, enzymes that hydrolytically destroy β-lactams. The other is the expression of penicillin-binding protein 2a (PBP 2a), which is not susceptible to inhibition by β-lactam antibiotics. Strains of S. aureus exhibiting either β-lactamase or PBP 2a-directed resistance (or both) have established a considerable ecological niche among human pathogens. The emergence and subsequent spread of bacterial strains designated as methicillin-resistant S. aureus (MRSA), from the 1960s to the present, has created clinical difficulties for nosocomial treatment on a global scale. The recent variants of MRSA that are resistant to glycopeptide antibiotics (such as vancomycin) have ushered in a new and disconcerting chapter in the evolution of this organism. Received 2 April 2005; received after revision 15 July 2005; accepted 25 July 2005  相似文献   

6.
Genetic basis of methicillin resistance in Staphylococcus aureus   总被引:5,自引:0,他引:5  
Methicillin resistance in staphylococci is due to the acquisition of the mecA gene encoding a new penicillin-binding protein (PBP2', PBP2a) that has a lower affinity to methicillin than the endogenous PBPs. PBP2' is involved in the assembly of the cell wall peptidoglycan in the presence of high concentrations of beta-lactams that otherwise inhibit the endogenous PBPs. The production of PBP2' is under dual control by its own mecR1-mecI- and the penicillinase blaR1-blaI-encoded regulatory elements. Resistance to high levels of methicillin depends, in addition to PBP2', on chromosomally encoded factors that are involved in the synthesis and degradation of the peptidoglycan. Any mutations that reduce peptidoglycan precursor formation or change the chemical composition of the muropeptide precursor result in lowered resistance.  相似文献   

7.
8.
目的调查分析我院20ff6~2010年临床分离的革兰阴性菌对碳青霉烯类抗生素的耐药性。方法采用纸片扩散法进行抗菌药物敏感实验,采用WHONET5.4软件及SPSS13.0软件进行数据分析。结果大肠埃希菌和肺炎克雷伯菌对亚胺培南和美罗培南的耐药率呈上升趋势,但最高不超过4.5%。铜绿假单胞菌对亚胺培南的耐药率2006年和2007年监测显示为21.3%和41%。2008年达到44.8%,在2009年下降为12.4%,但2010年爽迅速增加到30.1%。鲍曼不动杆菌对亚胺培南耐药率的逐年上升更为显著,从2006年9.1%上升到2010年的68%,差异具有统计学意义(P〈0.01)。嗜麦芽窄食单胞菌对碳青霉烯类抗生素天然耐药,2006年对亚胺培南耐药率为30%,但自2007年起就增加到80.8%,最高达100%。结论肠杆菌科细菌对碳青霉烯类敏感性高,近年耐药率有上升趋势。铜绿假单胞菌和鲍曼不动杆菌对碳青霉烯类耐药率高,尤其是鲍曼不动杆菌的分离率逐年增加,耐药形势严峻。临床应合理使用抗生素,减少多重耐药株的产生。  相似文献   

9.
The DD-peptidase enzymes (penicillin-binding proteins) catalyze the final transpeptidation reaction of bacterial cell wall (peptidoglycan) biosynthesis. Although there is now much structural information available about these enzymes, studies of their activity as enzymes lag. It is now established that representatives of two low-molecular-mass classes of DD-peptidases recognize elements of peptidoglycan structure and rapidly react with substrates and inhibitors incorporating these elements. No members of other DD-peptidase classes, including the high-molecular-mass enzymes, essential for bacterial growth, appear to interact strongly with any particular elements of peptidoglycan structure. Rational design of inhibitors for these enzymes is therefore challenging.  相似文献   

10.
Bacterial targets and antibiotics: genome-based drug discovery   总被引:2,自引:0,他引:2  
The requirement for novel classes of antibiotics to combat the emergence of resistant and multi-resistant bacteria has coincided with the completion sequencing of a number of bacterial genomes. The in silico analysis of these genomes coupled with innovative genetic manipulation has already led to the identification of conserved essential (either in vitro or in vivo, depending on the methodology) genes that are potential targets for antibacterial research. New technologies, made possible by access to the genomic sequences, are capable of simultaneously quantifying almost the entire complement of gene products synthesised by bacterial cells. These technologies are opening up the way for the analysis of expression patterns elicited in cells in response to changes in their environment. The integration of these technologies into the drug discovery process is still in its infancy and the potential wealth of information, some of it already available, has yet to be fully realised.  相似文献   

11.
The major route of protein translocation in bacteria is the so-called general secretion pathway (Sec-pathway). This route has been extensively studied in Escherichia coli and other bacteria. The movement of preproteins across the cytoplasmic membrane is mediated by a multimeric membrane protein complex called translocase. The core of the translocase consists of a proteinaceous channel formed by an oligomeric assembly of the heterotrimeric membrane protein complex SecYEG and the peripheral adenosine triphosphatase (ATPase) SecA as molecular motor. Many secretory proteins utilize the molecular chaperone SecB for targeting and stabilization of the unfolded state prior to translocation, while most nascent inner membrane proteins are targeted to the translocase by the signal recognition particle and its membrane receptor. Translocation is driven by ATP hydrolysis and the proton motive force. In the last decade, genetic and biochemical studies have provided detailed insights into the mechanism of preprotein translocation. Recent crystallographic studies on SecA, SecB and the SecYEG complex now provide knowledge about the structural features of the translocation process. Here, we will discuss the mechanistic and structural basis of the translocation of proteins across and the integration of membrane proteins into the cytoplasmic membrane.Received 10 January 2003; received after revision 2 April 2003; accepted 4 April 2003  相似文献   

12.
Retinal proteins function as photoreceptors and ion pumps. Xanthorhodopsin of Salinibacter ruber is a recent addition to this diverse family. Its novel and distinctive feature is a second chromophore, a carotenoid, which serves as light-harvesting antenna. Here we discuss the properties of this carotenoid/retinal complex most relevant to its function (such as the specific binding site controlled by the retinal) and its relationship to other retinal proteins (bacteriorhodopsin, archaerhodopsin, proteorhodopsin and retinal photoreceptors of archaea and eukaryotes). Antenna addition to a retinal protein has not been observed among the archaea and emerged in bacteria apparently in response to environmental conditions where light-harvesting becomes a limiting factor in retinal protein functioning. Received 2 April 2007; received after revision 14 May 2007; accepted 16 May 2007  相似文献   

13.
Despite its extreme toxicity, botulinum neurotoxin is widely utilized in low doses as a treatment for several neurological disorders; higher doses cause the neuroparalytic syndrome botulism. The toxin blocks neurotransmitter release by preferentially attaching to pre-synaptic membrane receptors at neuromuscular junctions and subsequently delivering a Zn2+-dependent protease component to presynaptic neuronal cytosol. These highly specialized enzymes exclusively hydrolyze peptide bonds within SNARE (soluble N-ethylmaleiamide sensitive factor attachment protein receptor) proteins. In this review we discuss the structural basis for botulinum toxin's exquisite specificity for its neuronal cell-surface receptors and intracellular SNARE targets.  相似文献   

14.
The distribution of the various cell wall and cell envelope (S-layer) polymers among the main lineages of the domain Archaea (Archaebacteria) and the chemical composition and primary structure of polymers forming rigid cell wall sacculi is described. Differences between bacteria and archaea in their sensitivity to antibiotics which inhibit cell wall synthesis in bacteria are discussed.  相似文献   

15.
Plant pathogenic bacteria inject about 30 virulence effector proteins into the host cell using a specialized secretion apparatus. Bacteria which are unable to do this elicit host immunity and cannot grow inside living plant tissue. Thus, the primary function of the effectors is to suppress host immunity. The identity of individual effectors within each complement varies even between closely related bacterial strains, and effectors themselves act redundantly and are apparently interchangeable. Many effectors are known to target components of plant defense pathways, but it is difficult to study their role in molecular terms. For some of them, there is controversy about their mode of action. We propose that effectors act promiscuously by targeting host molecules with low specificity and affinity.  相似文献   

16.
Bacteriocin production is a widespread phenomenon among bacteria. Bacteriocins hold great promise for the treatment of diseases caused by pathogenic bacteria and could be used in the future as alternatives to existing antibiotics. The anti-infective potential of bacteriocins for inhibiting pathogens has been shown in various food matrices including cheese, meat, and vegetables. However, their inhibition of pathogens in vivo remains unclear and needs more investigation, due mainly to difficulties associated with demonstrating their health benefits. Many bacteriocins produced by established or potential probiotic organisms have been evaluated as potential therapeutic agents and interesting findings have been documented in vitro as well as in a few in vivo studies. Some recent in vivo studies point to the efficacy of bacteriocin-based treatments of human and animal infections. While further investigation remains necessary before the possibilities for bacteriocins in clinical practice can be described more fully, this review provides an overview of their potential applications to human and veterinary health.  相似文献   

17.
Huntington’s disease (HD) is caused by a polyglutamine expansion in the protein huntingtin and is characterized by intraneuronal inclusions and widespread neuronal death at the late stage of the disease. In research, most of the emphasis has been on understanding the cell death and its mechanisms. Until recently, it was believed that the vast majority, if not all, of the symptoms in HD are a direct consequence of neurodegeneration. However, increasing evidence shows that subtle alterations in synaptic function could underlie the early symptoms. It is of particular interest to understand the nature of this neuronal dysfunction. Normal huntingtin interacts with various cytoskeletal and synaptic vesicle proteins that are essential for exocytosis and endocytosis. Altered interactions of mutant huntingtin with its associated partners could contribute to abnormal synaptic transmission in HD. This review describes recent advances in understanding synaptic dysfunction in HD.Received 2 March 2005; received after revision 13 April 2005; accepted 19 April 2005  相似文献   

18.
Affinity proteins based on small scaffolds are currently emerging as alternatives to antibodies for therapy. Similarly to antibodies, they can be engineered to have high affinity for specific proteins. A potential problem with small proteins and peptides is their short in vivo circulation time, which might limit the therapeutic efficacy. To circumvent this issue, we have engineered bispecificity into an albumin-binding domain (ABD) derived from streptococcal Protein G. The inherent albumin binding was preserved while the opposite side of the molecule was randomized for selection of high-affinity binders. Here we present novel ABD variants with the ability to bind to the epidermal growth factor receptor 3 (ErbB3). Isolated candidates were shown to have an extraordinary thermal stability and affinity for ErbB3 in the nanomolar range. Importantly, they were also shown to retain their affinity to albumin, hence demonstrating that the intended strategy to engineer bispecific single-domain proteins against a tumor-associated receptor was successful. Moreover, competition assays revealed that the new binders could block the natural ligand Neuregulin-1 from binding to ErbB3, indicating a potential anti-proliferative effect. These new binders thus represent promising candidates for further development into ErbB3-signaling inhibitors, where the albumin interaction could result in prolonged in vivo half-life.  相似文献   

19.
Bacterial antibiotic efflux systems of medical importance   总被引:6,自引:0,他引:6  
Multidrug efflux systems endow on bacterial cells the ability to limit the access of antimicrobial agents to their targets. By actively pumping out antibiotic molecules, these systems prevent the intracellular accumulation necessary for antibiotics to exert their lethal activity. Drug efflux appears to be one of the most widespread antibiotic resistance mechanisms among microorganisms, since it has been demonstrated to occur in many Gram-positive and Gram-negative bacteria including medically important species like staphylococci, streptococci, enterobacteria and opportunistic pathogens like Pseudomonas aeruginosa. Efflux pumps can be specific for only one substrate or accommodate a more or less wide range of noxious products. Export of structurally unrelated compounds confers a multidrug-resistance phenotype on bacterial cells. Therapeutically critical levels of resistance can be achieved by overexpression of efflux systems, especially in those species such as P. aeruginosa which possess a low outer membrane permeability. It is suspected that the dual physiological function of active efflux systems is both the secretion of intracellular metabolites and the protection against a variety of harmful substances that the microorganism may encounter in its natural environment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号