首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
P D Burrows  G B Beck-Engeser  M R Wabl 《Nature》1983,306(5940):243-246
Switching of an Abelson virus-transformed mouse lymphoid cell line from immunoglobulin mu to gamma 2b heavy-chain synthesis in vitro is accompanied by loss of DNA sequences between the JH and C gamma 2b gene segments, and thus cannot be explained by differential RNA processing. The light-chain loci of both mu- and gamma 2b-producing cell clones are in the embryonic configuration, which indicates that class switching can occur in pre-B cells.  相似文献   

3.
B lymphocytes originate from pluripotential haematopoietic stem cells and differentiate into immunoglobulin (Ig)-producing cells. B-cell lineage differentiation is accompanied by two types of immunoglobulin gene rearrangements--rearrangement of V, D and J gene segments to create a functional V gene and rearrangement of CH genes for heavy-chain switching. These results, however, have been obtained mainly by analysis of immunoglobulin gene organization of myeloma cells. Baltimore and his colleagues have established Abelson murine leukaemia virus (A-MuLV)-transformed cell lines and found a few lines capable of carrying out kappa-gene rearrangement or undergoing isotype switching during in vitro culture. To study early B-cell lineage differentiation events, we have now also established A-MuLV-transformed cell lines which are capable of differentiating from mu- to mu+ and of undergoing continuing rearrangement of heavy-chain genes in culture. Analysis of immunoglobulin gene organization of these transformed cells revealed that mu- cells have already undergone DNA rearrangements involving JH segments but an additional rearrangement of JH segments is required for initiation of mu-chain synthesis. Southern blot analysis of the DNA and two-dimensional gel electrophoresis of intracytoplasmic mu-chain show that mu-chain diversity with respect to antigen specificity may be generated during this second rearrangement process. As no rearrangement of light-chain genes takes place in these cells, this implies that light-chain gene rearrangement requires some further change, or a different enzyme.  相似文献   

4.
Deletion of immunoglobulin heavy chain genes from expressed allelic chromosome   总被引:19,自引:0,他引:19  
Y Yaoita  T Honjo 《Nature》1980,286(5776):850-853
We have studied the organization of immunoglobulin heavy-chain genes in a gamma 2b-chain (BALB/c allotype)-producing myeloma BKC F1 # 15 induced in a F1 mouse between C57BL and BALB/c. Southern blot hybridization studies using cloned mu, gamma 1 and gamma 2b-chain genes as probes demonstrate that the mu- and gamma 1-chain genes of the expressed chromosome are deleted while these genes of the unexpressed chromosome are retained. The gamma 2b-chain gene of the expressed allele is rearranged while that gene of the unexpressed allele seems unchanged, as do the gamma 2a-chain genes. These results support the allelic deletion mechanism in heavy-chain class switch and the order of H chain genes.  相似文献   

5.
M Wabl  J Meyer  G Beck-Engeser  M Tenkhoff  P D Burrows 《Nature》1985,313(6004):687-689
B lymphocytes may switch from producing an immunoglobulin heavy chain of the mu class to that of the gamma, epsilon or alpha class. To maintain the specificity, the new heavy chain must keep the original variable (V) region; this is achieved by deleting DNA sequences so that the V (consisting of joined VH, diversity (DH) and joining (JH) gene segments) and C (constant) gene segments coding for the new heavy chain are brought into close proximity (reviewed in ref. 5; we do not consider here the mu-delta situation). There are, in principle, three types of chromosomal rearrangements that yield a deletion: rearrangement within a chromatid; unequal sister chromatid exchange (as suggested by Obata et al.); and unequal recombination between chromosomal homologues. We have analysed the arrangement of C mu DNA in clones of the pre-B-cell line 18-81 that switches in vitro from mu to gamma 2b. The clones examined produce either mu, gamma 2b or no immunoglobulin chain. We report here that all the gamma 2b clones had lost at least one copy of C mu and no clones contained three copies of C mu. These findings formally exclude both unequal sister chromatid exchange and recombination between homologues as mechanisms for creating a gene encoding the gamma 2b chain.  相似文献   

6.
Human immunoglobulin light-chain genes become rearranged in an ordered fashion during pre-B-cell development such that rearrangement generally occurs in kappa genes before lambda genes (refs 1,2). This ordered process includes an unanticipated deletion of the constant kappa (C kappa) gene and kappa enhancer sequence which precedes lambda rearrangement, and the site of this deletional recombination was located 3' to the joining (J kappa) segments in 75% of cases studied. We have now characterized the recombinational element responsible for this event on three separate alleles and found them to be identical. This kappa-deleting element recombined site-specifically with a palindromic signal (CACAGTG) located in the J kappa-C kappa intron. All losses of C kappa genes in other human B cells were mediated by this determinant, including the 25% of instances when this element recombined with sequences 5' to J kappa. In contrast, the kappa-deleting element remained in its germline form on all successful kappa-producing alleles. Moreover, kappa loss is an evolutionarily conserved event, as the kappa-deleting element appears to be the human homologue of the murine RS sequence. Our results suggest that this element may help ensure isotypic and allelic exclusion of light chains and may be involved in the ordered use of human light-chain genes.  相似文献   

7.
Regulated progression of a cultured pre-B-cell line to the B-cell stage   总被引:3,自引:0,他引:3  
M G Reth  P Ammirati  S Jackson  F W Alt 《Nature》1985,317(6035):353-355
The variable (V) regions of heavy and light immunoglobulin chains are encoded by multiple germline DNA elements which are assembled into complete variable-region genes in precursor(pre-) B lymphocytes. The heavy-chain V region (VH) is assembled from three separate germline DNA elements, the variable (VH), diversity (D) and joining (JH) segments; whereas light-chain variable regions of either the kappa or lambda type are assembled from two elements, the VL and JL. Analysis of tumour cell lines or sorted cell populations which represent early and late pre-B cells has suggested that heavy-chain assembly and expression generally precedes that of light chains; but, primarily because of the lack of appropriate model systems to study the phenomenon, the mechanism and significance of this apparently orderly differentiation process are much debated. Here we describe for the first time a transformed cell line, 300-19, which sequentially undergoes all of the immunoglobulin gene rearrangement and expression events associated with the differentiation of pre-B cells to surface immunoglobulin-positive B lymphocytes. Analysis of the in vitro differentiation of 300-19 cells provides direct evidence for distinct differentiation phases of first VH and subsequently VL assembly during B-cell differentiation. Furthermore, these analyses suggest that the mu heavy chain, resulting from a productive VHDJH rearrangement, has both a positive and a negative regulatory role in mediating this ordered differentiation process, that is, signalling the cessation of VH gene assembly and simultaneously signalling the onset of VL assembly.  相似文献   

8.
F C Mills  L M Fisher  R Kuroda  A M Ford  H J Gould 《Nature》1983,306(5945):809-812
An immunoglobulin polypeptide chain is encoded by multiple gene segments that lie far apart in germ-line DNA and must be brought together to allow expression of an immunoglobulin gene active in B lymphocytes. For the immunoglobulin heavy chain genes, one of many variable (V) region genes becomes joined to one of several diversity (D) segments which are fused to one of several joining (J) segments lying 5' of the constant region (C) genes. Here we show that the rearranged mu genes of an IgM-producing human B-lymphocyte cell line exhibit pancreatic deoxyribonuclease (DNase I) hypersensitive sites in the JH-C mu intron that are absent in naked DNA or the chromatin of other differentiated cell types. DNA sequence analysis reveals that the major hypersensitive site maps to a conserved region of the JH-C mu intron recently shown to function as a tissue-specific enhancer of heavy-chain gene expression. A similar association of an enhancer-like element with a DNase I hypersensitive site has been reported for the mouse immunoglobulin light-chain J kappa-C kappa intron. These results implicate disruption of local chromatin structure in the mechanism of immunoglobulin enhancer function.  相似文献   

9.
D Kitamura  K Rajewsky 《Nature》1992,356(6365):154-156
Burnet's clonal selection theory suggests that each B lymphocyte is committed to a single antibody specificity. This is achieved by a programme of somatic rearrangements of the gene segments encoding antibody variable (V) regions, in the course of B-cell development. Evidence from immunoglobulin-transgenic mice and immunoglobulin-gene-transfected transformed pre-B cells suggest that the membrane form of the immunoglobulin heavy (H) chain of class mu (microns), expressed from a rearranged H-chain (IgH) locus, may signal allelic exclusion of the homologous IgH locus in the cell and initiation of light (L)-chain gene rearrangement in the Ig kappa loci. We report here that targeted disruption of the membrane exon of the mu chain indeed results in the loss of H-chain allelic exclusion. But, some kappa chain gene rearrangement is still observed in the absence of micron expression.  相似文献   

10.
The most JH-proximal VH gene segments are used highly preferentially to form VHDJH rearrangements in pre-B-cell lines. This result demonstrates that the rate at which immunoglobulin VH gene segments recombine is influenced by their chromosomal organization, and that the initial repertoire of VH genes expressed in pre-B cells is strikingly different from that seen in mature populations.  相似文献   

11.
12.
U Storb  K A Denis  R L Brinster  O N Witte 《Nature》1985,316(6026):356-358
Recent experiments have shown that the microinjected kappa-chain gene of transgenic mice is expressed in a tissue-specific fashion only in B lymphocytes. The next step was to determine whether, within the B-lymphocyte lineage, the kappa-chain gene was expressed in a normal developmental fashion. Normally, only mu heavy(H)-chain genes, and not kappa-chain genes, are expressed in pre-B cells. To obtain cloned cell lines derived from early cells of the B-cell lineage, we transformed bone marrow cells from kappa-transgenic mice with Abelson murine leukaemia virus (A-MuLV) and tested the resultant cell lines for the retention of the kappa transgene and its expression in RNA and protein. We found that cells with the pre-B phenotype exist in kappa-transgenic mice. We further observed that in A-MuLV-transformed cell lines from a kappa-transgenic mouse with a high copy number of the transgene, the proportion of cell lines expressing kappa (transgenic kappa) was higher than in cell lines from normal or low copy number transgenic mice.  相似文献   

13.
14.
D Kitamura  J Roes  R Kühn  K Rajewsky 《Nature》1991,350(6317):423-426
Of the various classes of antibodies that B lymphocytes can produce, class M (IgM) is the first to be expressed on the membrane of the developing cells. Pre-B cells, the precursors of B-lymphocytes, produce the heavy chain of IgM (mu chain), but not light chains. Recent data suggest that pre-B cells express mu chains on the membrane together with the 'surrogate' light chains lambda 5 and V pre B (refs 2-7). This complex could control pre-B-cell differentiation, in particular the rearrangement of the light-chain genes. We have now assessed the importance of the membrane form of the mu chain in B-cell development by generating mice lacking this chain. We disrupted one of the membrane exons of the gene encoding the mu-chain constant region by gene targeting in mouse embryonic stem cells. From these cells we derived mice heterozygous or homozygous for the mutation. B-cell development in the heterozygous mice seemed to be normal, but in homozygous animals B cells were absent, their development already being arrested at the stage of pre-B-cell maturation.  相似文献   

15.
Circular DNA is a product of the immunoglobulin class switch rearrangement   总被引:24,自引:0,他引:24  
U von Schwedler  H M J?ck  M Wabl 《Nature》1990,345(6274):452-456
The class of immunoglobulin is defined by the constant region of its heavy chain. When a B lymphocyte switches the class of heavy chain it produces, the constant region of mu-type heavy chain is replaced; this occurs through a DNA rearrangement that brings the gene segment encoding the new constant region close to the VDJ segment encoding the variable region. The pre-B-cell line 18-81, which switches from heavy chain mu to gamma 2b production in culture, occasionally abnormally rearranges the heavy chain locus so that DNA sequences between the switch regions of mu and gamma 2b are inverted. Because looping-out is an intermediate step in generating an inversion, the switch rearrangement could occur by looping-out and deletion. Provided that recombination is reciprocal, this would produce a circle of DNA. Indeed, circular DNA molecules have been isolated as products of rearrangement among gene segments encoding the variable regions of the T-cell receptor and of the immunoglobulin heavy chain and light chain. But whereas the breakpoints for the variable region rearrangement are precisely defined, the breakpoints for any given heavy chain class switch are scattered over a length of greater than 6 kilobases, including both switch regions. We have now isolated circular DNA containing the sequences deleted by class-switching, thereby showing that the immunoglobulin heavy chain class switch occurs through looping-out and deletion.  相似文献   

16.
A given B lymphocyte makes an antibody containing either kappa- or lambda-light chains, but not both. This isotype exclusion is effected at the level of the rearrangement of the immunoglobulin gene segments, although by an unknown mechanism. An attractive possibility is that, following productive rearrangement of one of the light-chain loci, the newly synthesized light-chain polypeptide inhibits DNA rearrangement for the other isotype. To test such feedback regulation, we have created transgenic mice carrying a rearranged lambda 1-gene. By contrast with the B cells in normal newborn mice which are mainly kappa+lambda-, the B cells in the newborn transgenic mice express lambda- but not kappa-chains. We propose that the synthesis of any light chain, be it kappa or lambda, that allows expression of IgM on the cell surface results in a cessation of all V-J joining. Interestingly, the limited light-chain repertoire of the transgenic mice does not persist and most adult B cells express endogenous kappa-rearrangements and down-regulate the transgene.  相似文献   

17.
18.
E Webb  J M Adams  S Cory 《Nature》1984,312(5996):777-779
Chromosome translocations in B-lymphoid tumours are providing intriguing insights and puzzles regarding the role of immunoglobulin genes in the activation of the myc oncogene (reviewed in refs 1, 2). The 15 ; 12 translocations found in most murine plasmacytomas and the analogous 8 ; 14 translocation in human Burkitt's lymphomas involve scissions of murine chromosome 15 (human chromosome 8) near the 5' end of the c-myc gene and subsequent fusion near an immunoglobulin heavy-chain gene. The less well characterized 'variant' translocations found in about 15% of such tumours also involve the myc-bearing chromosome band, but exchange occurs with a chromosome bearing an immunoglobulin light-chain locus--in mice, the kappa-chain locus bearing chromosome 6 (refs 3-5) and, in man, chromosome 2 (or 22), at the same band at which the kappa (or lambda) locus lies (reviewed in ref. 1). The Burkitt variant translocations involve scissions 3' of c-myc; one 8 ; 22 translocation placed the C lambda locus just 3' of c-myc, but usually the chromosome 8 breakpoint is a greater, but unknown, distance away from c-myc, more than 20 kilobases (kb) in one 8 ; 2 translocation involving the C kappa gene. Little is known about the murine 6 ; 15 translocations, although a C kappa gene cloned from one plasmacytoma (PC7183) is linked, via chromosome 12 sequences, to an unidentified region of chromosome 15 (ref. 11). We describe here the chromosome fusion region from plasmacytoma ABPC4, which displays the typical reciprocal 6;15 translocations. We find that the chromosome 6 breakpoint is near C kappa but, unlike those in the heavy-chain locus, not at a position where immunoglobulin genes normally recombine. Moreover, the chromosome 15 sequences involved in the ABPC4 translocation are not derived from the vicinity of c-myc.  相似文献   

19.
The early stages of murine B-cell differentiation are characterized by a series of immunoglobulin gene rearrangements which are required for the assembly of heavy(H) and light(L)-chain variable regions from germline gene segments. Rearrangement at the heavy-chain locus is initiated first and consists of the joining of a diversity (DH) gene segment to a joining (JH) gene segment. This forms a DJH intermediate to which a variable (VH) gene segment is subsequently added. Light-chain gene rearrangement follows and consists of the joining of a VL gene segment to a JL gene segment: once a productive light-chain gene has been formed the cell initiates synthesis of surface immunoglobulin M (sIgM) receptors (reviewed in ref. 1). These receptors are clonally distributed and may undergo further diversification either by somatic mutation or possibly by continued recombinational events. Such recombinational events have been detected in the Ly 1+ B-cell lymphoma NFS-5, which has been shown to rearrange both lambda and H-chain genes subsequent to the formation of sIgM (mu kappa) molecules. Here we have analysed a rearrangement of the productive allele of NFS-5 and found that it is due to a novel recombination event between VH genes which results in the replacement of most or all of the coding sequence of the initial VHQ52 rearrangement by a germline VH7183 gene. Embedded in the VH coding sequence close to the site of the cross-over is the sequence 5' TACTGTG 3', which is identical to the signal heptamer found 5' of many DH gene segments. This embedded heptamer is conserved in over 70% of known VH genes. We suggest that this heptamer mediates VH gene replacement and may play an important part in the development of the antibody repertoire.  相似文献   

20.
Approximately 20% of patients with acute lymphocytic leukaemia (ALL) have leukaemic blasts with features of pre-B cells which are the recently characterized precursors of B lymphocytes in normal development (for a review, see ref. 2). Pre-B cells isolated from normal bone marrow or fetal liver, and malignant cells from patients with pre-B cell leukaemia, are rapidly dividing lymphoid cells that contain cytoplasmic immunoglobulin mu heavy chains, but have no detectable surface immunoglobulin. The resemblance of immunoglobulin-containing ALL cells to normal precursors of B lymphocytes and their availability in relatively pure preparations allowed us to explore them as models of early stages in the differentiation of the B-lymphocyte line. We report here observations on the occurrence of intermediate pre-B/B-cell phenotypes, immunoglobulin isotype switching and the asynchrony of immunoglobulin heavy and light chain expression in 30 cases of ALL and 3 cases of chronic myelogenous leukaemia in lymphoblastic crisis (CML-BC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号