首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对库区巡检图像采集设备对图像目标智能识别需求,进行基于视觉的远距离可疑目标识别算法设计与实现. 采用目标检测算法对图像进行目标识别并采集,通过基于卷积神经网络的深度学习模型卷积层对目标图像提取特征,采用基于机器学习传统方法的浅层网络对特征进行可疑目标分类. 根据算法设计实验,实验结果表明本算法模型识别效果良好,可有效减少人工识别工作量,能满足实际应用需要要求.   相似文献   

2.
提出了一种新的特征合并机制,模拟初级视皮层中复杂细胞汇聚合并来自不同简单细胞的响应.该机制首先对简单细胞的线性响应进行归一化,然后将同频率和方向下不同相位简单细胞的响应进行能量合并,最后取局部邻域内响应的最大值作为合并后的输出,得到对输入刺激具有一定相位和平移不变性的不变特征.将其应用于目标识别,在MNIST手写数据库上的测试结果表明:基于新的合并机制的方法能取得更低的识别错误率,对目标的局部变化有更强的鲁棒性.  相似文献   

3.
4.
提出了一种基于机器视觉的实时动态多目标识别的方法.该方法首先根据前后帧之间像素的变化,分割出运动目标和样本图像,然后使用Gabor滤波器提取图像的特征,得到特征向量.最后使用Fisher判别准则分类识别,将得到的分类识别结果自动标注在输出图像中,并且将其连续输出,便能获得已经识别完成的输出视频.实验结果表明,在多个动态目标的情况下,综合运用Gabor特征与帧间差分法的动态目标识别方法能准确检测到动态目标区域,并能准确分类、识别和标注.  相似文献   

5.
近年来,基于计算机视觉的动态目标识别的研究和应用逐渐成为热点问题,通过介绍国内外基于计算机视觉的动态目标检测、确认、定位等领域的研究进展,展望目标识别的发展趋势.首先介绍目标识别过程中的典型方法,然后对基于计算机视觉的动态目标识别算法进行分类,接着对各种方法中采用的不同算法技术进行阐述,并分别介绍了各类别中具有代表性的算法及其优缺点,最后就动态目标识别领域的研究难点及发展趋势进行了简要论述.  相似文献   

6.
合成孔径雷达有着观测范围广和分辨率高的特点,可以全天候工作,并能有效地识别伪装和穿透掩盖物,但也存在雷达图像数据量大且目标电磁散射特征复杂等特点,为目标的识别引入了噪声和干扰,因此发展快速和智能化的SAR图像目标识别技术得到越来越多的关注.本文针对美国空军研究实验室SAR图像中的8个目标物引入3种机器学习算法和一些数据处理方法构建了相关的识别模型,并对其识别能力进行对比分析,结果显示这3种机器学习算法通过优化算法都可以获得较高的识别准确率(> 80%),尤其是KNN算法的测试集准确率都可以高达97%.本文研究结果可为SAR目标识别的人工智能化技术提供一些方法上的参考和指导.  相似文献   

7.
基于双目视觉的移动机器人动态目标识别与定位   总被引:1,自引:0,他引:1  
提出了一种双目移动机器人实时动态目标识别与定位方法。该算法首先采用SIFT(Scale Invariant Features Transforms)算法提取目标特征,并结合双目视差特征进行目标匹配;然后通过区域增长方法进行目标区域的提取;最后结合双目视觉标定的模型对目标进行定位。实验结果表明:该方法在摄像机运动-目标运动情况下,能对局部特征未知或特征不明显的动态目标进行有效的识别与定位。  相似文献   

8.
维数约减问题出现在信息处理的许多方面,非线性方法主要有局部线性嵌入LLE (Locally Linear Embedding) 、拉普拉斯特征映射(Laplacian Eigenmap) 、基于Hessian 矩阵的LLE 等,它们通过在高维空间中设计数据集所在流形的拓扑、几何等特性,很好地弥补了线性降维不能发现数据集非线性结构的不足.其中局部线性嵌入这种非监督学习算法应用广泛,在此基础上将其用于作为雷达目标识别的五种飞机数据,取得了很好的效果.  相似文献   

9.
根据RoboCup小型组足球机器人的比赛规则,提出了一种新的机器人小车的色标设计方案,方案中采用了一种切实可行、准确、高效的目标识别策略,在目标识别过程中,将移动网格技术与动态窗口技术相结合,在小型组足球机器人视觉系统中取得了较为理想的效果,与采用游程编码相比识别目标的平均时间少9ms以上.  相似文献   

10.
证据分类算法已被广泛应用于模式识别中。针对传统证据近邻算法在证据权重和组合规则上的局限,研究了一种新的基于DSmT的证据K近邻识别算法(DSmT-KNN)。首先在水声目标的各类别训练模板库中,利用目标数据与各近邻的特征相似度来分别构造基本置信指派,并根据K个近邻数据的距离大小对构造的置信指派进行加权。然后利用DSmT规则对加权证据进行融合。最后根据每个类别下融合结果的算术平均值来判断目标的类别属性。通过水声目标实测数据实验,将DSmT-KNN与其他几种常见的方法进行了对比分析,结果表明新算法能有效提高系统的识别准确率。  相似文献   

11.
针对关键词发音相似易混淆及反词模型难确定、难训练等问题,提出一种结合模糊理论的方法,利用模糊C均值聚类算法对候选关键词进行2次聚类,同时将新的聚类中心作为反词模型进行最后确认.实验结果表明,这种方法使识别率得到了显著的提高.  相似文献   

12.
为了提高在噪声环境下语音识别系统的性能,对基于子带独立感知理论的语音识别方法进行了研究.这些方法利用人耳对不同频率信号感知的差异,以及噪声和识别对象的频域特征差异,分别采用线性分析、判决分析、多层感知机以及子带最大似然估计对噪声影响进行补偿.实验表明,子带分析采用非线性策略优于线性策略.基于独立感知假定的子带模型,虽然由于独立性假定丢失了带间相关性,但对于噪声环境下语音识别而言可以捕获噪声和识别对象的频谱差异,从而获得比全带分析更高的鲁棒性.  相似文献   

13.
在线运动目标跟踪是目前模式识别领域的一个难点问题,目标物体角度、姿态、远近距离变化以及遮挡等给鲁棒在线跟踪算法提出了苛刻的要求,单一算法很难有效处理所有问题.多方法集成是实现鲁棒在线跟踪的一种有效手段,为此提出了一个集成on-line boosting、基于归一化互相关的模板匹配法和粒子群优化算法的自适应目标跟踪算法框架.其中,on-line boosting是基本的跟踪算法;基于归一化互相关的模板匹配法有效避免了on-line boosting过多的错误更新;而基于粒子群优化算法的跟踪策略提高了系统对快速运动、外观变化的适应能力,同时也为模板的更新提供了保障,三种算法形成了有效互补,在稳定性和可塑性之间达到了一种平衡.在不同视频测试序列上的实验结果表明,该算法有效地缓解了自适应性和漂移之间的矛盾,能够实时地完成复杂的跟踪任务.  相似文献   

14.
提出了一种快速有效的人脸识别系统.针对特征脸方法只能识别标准正面人脸的局限性,设计了前端处理模块,首先计算待识别图像中人脸的倾斜角度,进行相应角度的旋转,然后剪切出人脸图像,进行尺寸调整,经过此处理后再进行特征脸识别.利用ORL人脸库和自建人脸库进行仿真实验,实验结果表明,本识别系统速度快,误识率低,具有实用性.  相似文献   

15.
基于多特征融合的目标跟踪算法   总被引:3,自引:0,他引:3  
针对单一特征的目标跟踪算法鲁棒性较差的情况,利用目标的多种观测信息通过D-S证据理论进行融合跟踪.在粒子滤波的总体框架下,嵌入Mean-Shift算法产生更加逼近真实后验分布的粒子,同时采用颜色和运动边缘特征作为观测模型,有效地避免了单一颜色特征在光照突变、姿态变化以及背景相似情况下的跟踪稳定性较差的问题.实验表明,该...  相似文献   

16.
本文采用蚁群算法对聚类数目已知的多字符进行聚类识别,在分析了基本蚁群算法的基础上,提出了一种改进的蚁群算法,该算法结合分布式计算、正反馈机制、贪婪式搜索算法等.对每只蚂蚁构造一个可行解,利用信息素矩阵,经过若干次的选代,找寻包含最优解的蚂蚁.通过与K-means和遗传算法比较,最后得出结论,该蚁群算法识别效果好,执行效率高.  相似文献   

17.
基于Viola-Jones框架的面部识别算法,提出使用矩形特征法进行特征值运算,采用感知器学习算法训练最佳特征,确定最佳阈值的算法.实验结果表明:该算法运算速度较快,错误分类率较低,识别率较高,误识率较低.  相似文献   

18.
首先讨论面向对象技术的两个基本概念:对象和类,然后提出用于分析、设计和实现软件系统的对象模型。  相似文献   

19.
目的用线性调整惯性权重的蛙跳算法(linear decreasing inertia weight shuffled frog leaping algorithm,LWSFLA)训练支持向量机(support vectors machines,SVM),解决人脸识别中SVM在训练样本数较多且维数较高时,识别效果不理想的缺陷。方法该算法先用反向学习法产生初始群体提高初始解的质量,再修改最差青蛙的更新策略,并引入线性递减的惯性权重,最后应用于人脸识别中。结果与结论 ORL和CAS-PEAL-R1人脸库的仿真实验表明,LWSFLA-SVM方法的人脸识别时间短,识别率高,在训练样本不足时,识别效果良好。  相似文献   

20.
通过分析人脸识别流程和结构设计分析得出分类算法的选择决定着人脸识别结果质量;从而对经典k NN算法进行分析,提出了一种动态取得k值的改进k NN分类算法。通过实验测试,证明改进的k NN分类算法可以有效地提高识别精度的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号