首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
P W Willard  R W Fuller 《Nature》1969,223(5204):417-418
  相似文献   

2.
3.
4.
Glutamate receptors in the rat central nervous system   总被引:7,自引:0,他引:7  
P J Roberts 《Nature》1974,252(5482):399-401
  相似文献   

5.
抑郁症发病的下丘脑中枢驱动调节机制   总被引:2,自引:0,他引:2  
本课题组的研究发现,抑郁症病人下丘脑室旁核促肾上腺皮质激素释放激素(CRH)神经元上雌激素和雄激素受体表达增加,性激素与CRH神经元上的性激素受体结合,作用于CRH启动子上的性激素反应单元调节CRH的转录活性,雌激素可增加CRH的表达而雄激素可抑制CRH的活性.除性激素受体外,抑郁症病人下丘脑内调控CRH神经元活性的许多其他受体也表现为平衡紊乱.靶向于糖皮质激素和性激素受体的药物可能通过作用于海马不同区域的神经元,调控抑郁症动物的相关行为.根据上述发现,我们提出抑郁症发病的多受体平衡紊乱假说.  相似文献   

6.
7.
A physiological role for GABAB receptors in the central nervous system   总被引:21,自引:0,他引:21  
P Dutar  R A Nicoll 《Nature》1988,332(6160):156-158
The role of GABA in synaptic transmission in the mammalian central nervous system is more firmly established than for any other neurotransmitter. With virtually every neuron studied, the synaptic action of GABA is mediated by bicuculline-sensitive GABAA receptors which selectively increase chloride conductance. However, it has been shown that GABA has a presynaptic inhibitory action on transmitter release that is insensiive to bicuculline and is selectively mimicked by baclofen. The receptors involved in this action are referred to as GABAB receptors, to distinguish them from the classic bicuculline-sensitive GABAA receptors. In hippocampal pyramidal cells an additional postsynaptic action of GABA and baclofen has been reported that is also insensitive to GABAA antagonists, and may be mediated by GABAB receptors on the postsynaptic neuron. This action of GABA and baclofen involves an increase in potassium conductance. Synaptic activation of pathways converging on hippocampal pyramidal cells results in a slow inhibitory postsynaptic potential which involves an increase in potassium conductance, and it has been suggested that GABAB receptors might be responsible for this synaptic potential. However, to establish convincingly that GABAB receptors are physiologically important in the central nervous system, a selective GABAB antagonist is required. Here we provide this missing evidence. Using the hippocampal slice preparation, we now report that the phosphonic acid derivative of baclofen, phaclofen, is a remarkably selective antagonist of both the postsynaptic action of baclofen and the bicuculline-resistant action of GABA, and that it selectively abolishes the slow inhibitory postsynaptic potential in pyramidal cells.  相似文献   

8.
GABA may be a neurotransmitter in the vertebrate peripheral nervous system   总被引:27,自引:0,他引:27  
gamma-Aminobutyric acid (GABA) is an inhibitory neurotransmitter in the peripheral nervous system of certain invertebrates and is thought to be a major transmitter in the vertebrate central nervous system. In this report we present evidence that GABA may also be a neurotransmitter in the vertebrate peripheral autonomic nervous system. We have used light and electron microscopic autoradiography to analyse high-affinity uptake of 3H-GABA into the myenteric plexus of the guinea pig taenia coli, both in situ and in a tissue culture preparation. In the isolated myenteric plexus, we have measured the specific activity of glutamic acid decarboxylase (GAD; EC 4.1.1.15), the enzyme responsible for conversion of glutamic acid to GABA in GABAergic neurones, and assessed the ability of this tissue to accumulate 3H-GABA newly synthesised from 3H-glutamic acid. Furthermore, we have measured the levels of endogenous GABA in strips of taenia coli containing the myenteric plexus.  相似文献   

9.
10.
E M Johnson  H K Yip 《Nature》1985,314(6013):751-752
Primary sensory neurones in cranial and dorsal root ganglia (DRG) of adult animals are generally thought to be maintained through connections with their peripheral (but not central) targets by trophic factor(s) other than nerve growth factor (NGF). Damage to the peripheral process of sensory neurones results in a dramatic response or even death of the neurones, whereas axotomy (cutting) of the central process does not initiate profound reaction in these neurones. The development and maintenance of neurones are highly dependent on a supply of trophic agents produced by targets and retrogradely transported via the peripheral process to the cell body. NGF deprivation in fetal rodents produced either by exogenously administered antibodies or by those of maternal origin, results in death of DRG and of some cranial sensory neurones. However, as chronic NGF deprivation in neonatal or adult rodents produces little or no cell death, it has been assumed that some other trophic factor(s) derived from the peripheral target sustains sensory neurones in postnatal life. By inducing NGF deprivation by autoimmunizing guinea pigs with mouse NGF and/or by cutting the central root (process) of a DRG, we demonstrate here that under certain conditions DRG neurones require NGF and centrally derived trophic support. Our results indicate that sensory neurones are maintained by the trophic support provided by both peripheral and central targets. This support is mediated by NGF and other as yet unidentified trophic factors. The relative importance of the two target fields and NGF compared with other trophic factors changes during development.  相似文献   

11.
Among various neuropeptides present in the central nervous system (CNS), substance P, an undecapeptide, is of great interest as a putative pain neurotransmitter. Substance P is present within numerous intrinsic neural pathways throughout the CNS. Several groups have attempted to label substance P receptors on brain membranes by ligand binding techniques; only one study used native 3H-labelled substance P as the ligand and the precise anatomical distribution of substance P receptors has not yet been described. Here we report the autoradiographic localization of 3H-labelled substance P receptors in rat brain using the in vitro autoradiographic technique developed recently. 3H-substance P binds specifically to an apparently single class of sites on slide-mounted brain sections (Kd = 0.52 nM; Bmax = 21.6 fmol per mg protein). The ligand selectivity pattern suggests that 3H-substance P binding sites are similar to those found in other assays. 3H-substance P receptors are highly concentrated in the external layers of the olfactory bulb, medial amygdala, dentate gyrus, superior colliculus, dorsal parabrachial nucleus and locus coeruleus, with moderate densities being found in the nucleus accumbens, striatum, periaqueductal grey and subiculum. The distribution of 3H-substance P receptors suggests that substance P is probably involved in the control of sensory processes such as pain, vision, audition and olfaction.  相似文献   

12.
J Havrankova  J Roth  M Brownstein 《Nature》1978,272(5656):827-829
  相似文献   

13.
E Potter  D P Behan  W H Fischer  E A Linton  P J Lowry  W W Vale 《Nature》1991,349(6308):423-426
Corticotropin-releasing factor (CRF), is a potent stimulator of synthesis and secretion of preopiomelanocortin-derived peptides. Although CRF concentrations in the human peripheral circulation are normally low, they increase throughout pregnancy and fall rapidly after parturition. Maternal plasma CRF probably originates from the placenta, which responds to the bioactive peptide and produces the peptide and its messenger RNA. Even though CRF concentrations in late gestational maternal plasma are similar to those in rat hypothalamic portal blood and to those that can stimulate release of adrenocorticotropic hormone (ACTH) in vitro, maternal plasma ACTH concentrations increase only slightly with advancing gestation and remain within the normal range. Several groups have now reported the existence of a CRF-binding protein in human plasma which inactivates CRF and which has been proposed to prevent inappropriate pituitary-adrenal stimulation in pregnancy. The binding protein was recently purified from human plasma. We have now isolated and partially sequenced the binding protein, allowing us to clone and characterize its complementary DNA from human liver and rat brain. Expression of the cDNAs for human and rat binding protein in COS7 cells showed that these proteins bind CRF with the same affinity as the native human protein. Both rat and human recombinant binding proteins inhibit CRF binding to a CRF antibody and inhibit CRF-induced ACTH release by pituitary cells in vitro.  相似文献   

14.
Chromatic sensitivity of ganglion cells in the peripheral primate retina   总被引:3,自引:0,他引:3  
Martin PR  Lee BB  White AJ  Solomon SG  Rüttiger L 《Nature》2001,410(6831):933-936
Visual abilities change over the visual field. For example, our ability to detect movement is better in peripheral vision than in foveal vision, but colour discrimination is markedly worse. The deterioration of colour vision has been attributed to reduced colour specificity in cells of the midget, parvocellular (PC) visual pathway in the peripheral retina. We have measured the colour specificity (red-green chromatic modulation sensitivity) of PC cells at eccentricities between 20 and 50 degrees in the macaque retina. Here we show that most peripheral PC cells have red-green modulation sensitivity close to that of foveal PC cells. This result is incompatible with the view that PC pathway cells in peripheral retina make indiscriminate connections ('random wiring') with retinal circuits devoted to different spectral types of cone photoreceptors. We show that selective cone connections can be maintained by dendritic field anisotropy, consistent with the morphology of PC cell dendritic fields in peripheral retina. Our results also imply that postretinal mechanisms contribute to the psychophysically demonstrated deterioration of colour discrimination in the peripheral visual field.  相似文献   

15.
16.
Thyrotrophin releasing factor in hypophyseal portal blood   总被引:1,自引:0,他引:1  
R L Averill  D F Salaman  W C Worthington 《Nature》1966,211(5045):144-145
  相似文献   

17.
Apoptosis in the nervous system   总被引:135,自引:0,他引:135  
Yuan J  Yankner BA 《Nature》2000,407(6805):802-809
Neuronal apoptosis sculpts the developing brain and has a potentially important role in neurodegenerative diseases. The principal molecular components of the apoptosis programme in neurons include Apaf-1 (apoptotic protease-activating factor 1) and proteins of the Bcl-2 and caspase families. Neurotrophins regulate neuronal apoptosis through the action of critical protein kinase cascades, such as the phosphoinositide 3-kinase/Akt and mitogen-activated protein kinase pathways. Similar cell-death-signalling pathways might be activated in neurodegenerative diseases by abnormal protein structures, such as amyloid fibrils in Alzheimer's disease. Elucidation of the cell death machinery in neurons promises to provide multiple points of therapeutic intervention in neurodegenerative diseases.  相似文献   

18.
19.
20.
Segmentation in the vertebrate nervous system   总被引:7,自引:0,他引:7  
R J Keynes  C D Stern 《Nature》1984,310(5980):786-789
Although there is good evidence that growing axons can be guided by specific cues during the development of the vertebrate peripheral nervous system, little is known about the cellular mechanisms involved. We describe here an example where axons make a clear choice between two neighbouring groups of cells. Zinc iodide-osmium tetroxide staining of chick embryos reveals that motor and sensory axons grow from the neural tube region through the anterior (rostral) half of each successive somite. 180 degrees antero-posterior rotation of a portion of the neural tube relative to the somites does not alter this relationship, showing that neural segmentation is not intrinsic to the neural tube. Furthermore, if the somitic mesoderm is rotated 180 degrees about an antero-posterior axis, before somite segmentation, axons grow through the posterior (original anterior) half of each somite. Some difference therefore exists between anterior and posterior cells of the somite, undisturbed by rotation, which determines the position of axon outgrowth. It is widespread among the various vertebrate classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号