首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tsukuda T  Fleming AB  Nickoloff JA  Osley MA 《Nature》2005,438(7066):379-383
The repair of DNA double-strand breaks (DSBs) is crucial for maintaining genome stability. Eukaryotic cells repair DSBs by both non-homologous end joining and homologous recombination. How chromatin structure is altered in response to DSBs and how such alterations influence DSB repair processes are important issues. In vertebrates, phosphorylation of the histone variant H2A.X occurs rapidly after DSB formation, spreads over megabase chromatin domains, and is required for stable accumulation of repair proteins at damage foci. In Saccharomyces cerevisiae, phosphorylation of the two principal H2A species is also signalled by DSB formation, which spreads approximately 40 kb in either direction from the DSB. Here we show that near a DSB phosphorylation of H2A is followed by loss of histones H2B and H3 and increased sensitivity of chromatin to digestion by micrococcal nuclease; however, phosphorylation of H2A and nucleosome loss occur independently. The DNA damage sensor MRX is required for histone loss, which also depends on INO80, a nucleosome remodelling complex. The repair protein Rad51 (ref. 6) shows delayed recruitment to DSBs in the absence of histone loss, suggesting that MRX-dependent nucleosome remodelling regulates the accessibility of factors directly involved in DNA repair by homologous recombination. Thus, MRX may regulate two pathways of chromatin changes: nucleosome displacement for efficient recruitment of homologous recombination proteins; and phosphorylation of H2A, which modulates checkpoint responses to DNA damage.  相似文献   

2.
Vader G  Blitzblau HG  Tame MA  Falk JE  Curtin L  Hochwagen A 《Nature》2011,477(7362):115-119
DNA double strand breaks (DSBs) in repetitive sequences are a potent source of genomic instability, owing to the possibility of non-allelic homologous recombination (NAHR). Repetitive sequences are especially at risk during meiosis, when numerous programmed DSBs are introduced into the genome to initiate meiotic recombination. In the repetitive ribosomal DNA (rDNA) array of the budding yeast Saccharomyces cerevisiae, meiotic DSB formation is prevented in part through Sir2-dependent heterochromatin formation. Here we show that the edges of the rDNA array are exceptionally susceptible to meiotic DSBs, revealing an inherent heterogeneity in the rDNA array. We find that this localized DSB susceptibility necessitates a border-specific protection system consisting of the meiotic ATPase Pch2 and the origin recognition complex subunit Orc1. Upon disruption of these factors, DSB formation and recombination increased specifically in the outermost rDNA repeats, leading to NAHR and rDNA instability. Notably, the Sir2-dependent heterochromatin of the rDNA itself was responsible for the induction of DSBs at the rDNA borders in pch2Δ cells. Thus, although the activity of Sir2 globally prevents meiotic DSBs in the rDNA, it creates a highly permissive environment for DSB formation at the junctions between heterochromatin and euchromatin. Heterochromatinized repetitive DNA arrays are abundant in most eukaryotic genomes. Our data define the borders of such chromatin domains as distinct high-risk regions for meiotic NAHR, the protection of which may be a universal requirement to prevent meiotic genome rearrangements that are associated with genomic diseases and birth defects.  相似文献   

3.
Neale MJ  Pan J  Keeney S 《Nature》2005,436(7053):1053-1057
DNA double-strand breaks (DSBs) with protein covalently attached to 5' strand termini are formed by Spo11 to initiate meiotic recombination. The Spo11 protein must be removed for the DSB to be repaired, but the mechanism for removal is unclear. Here we show that meiotic DSBs in budding yeast are processed by endonucleolytic cleavage that releases Spo11 attached to an oligonucleotide with a free 3'-OH. Two discrete Spo11-oligonucleotide complexes were found in equal amounts, differing with respect to the length of the bound DNA. We propose that these forms arise from different spacings of strand cleavages flanking the DSB, with every DSB processed asymmetrically. Thus, the ends of a single DSB may be biochemically distinct at or before the initial processing step-much earlier than previously thought. SPO11-oligonucleotide complexes were identified in extracts of mouse testis, indicating that this mechanism is evolutionarily conserved. Oligonucleotide-topoisomerase II complexes were also present in extracts of vegetative yeast, although not subject to the same genetic control as for generating Spo11-oligonucleotide complexes. Our findings suggest a general mechanism for repair of protein-linked DSBs.  相似文献   

4.
Clustered DNA damage is considered as a critical type of lesions induced by ionizing radiation, which can be converted into the fatal or strong mutagenic complex double strand breaks (DSBs) during damage processing in the cells. The new data show that high energy protons produce more potentially lethal DSBs than low LET radiation. In this study, plasmid DNA were used to in-vestigate and re-evaluate the biological effects induced by the protons with the LET of ~3.6 keV/μm at the molecular level in vitro, including single strand breaks (SSBs), DSBs, isolated and clustered base damages. The results of complex DNA damage detections indicated that protons at the given LET value induce about 1.6 fold more non-DSB clustered DNA damages than the prompt DSB. The DNA damage yields by protons were greater than that by γ-rays, specifically by 6 fold for the isolated type of DNA damage and 14 fold for the clustered damage. Furthermore, the spectrum of damages was also demonstrated to be depended on the radiation quality, with protons producing more DSBs relative to clusters than do γ-rays.  相似文献   

5.
The mechanisms by which eukaryotic cells sense DNA double-strand breaks (DSBs) in order to initiate checkpoint responses are poorly understood. 53BP1 is a conserved checkpoint protein with properties of a DNA DSB sensor. Here, we solved the structure of the domain of 53BP1 that recruits it to sites of DSBs. This domain consists of two tandem tudor folds with a deep pocket at their interface formed by residues conserved in the budding yeast Rad9 and fission yeast Rhp9/Crb2 orthologues. In vitro, the 53BP1 tandem tudor domain bound histone H3 methylated on Lys 79 using residues that form the walls of the pocket; these residues were also required for recruitment of 53BP1 to DSBs. Suppression of DOT1L, the enzyme that methylates Lys 79 of histone H3, also inhibited recruitment of 53BP1 to DSBs. Because methylation of histone H3 Lys 79 was unaltered in response to DNA damage, we propose that 53BP1 senses DSBs indirectly through changes in higher-order chromatin structure that expose the 53BP1 binding site.  相似文献   

6.
Masumoto H  Hawke D  Kobayashi R  Verreault A 《Nature》2005,436(7048):294-298
DNA breaks are extremely harmful lesions that need to be repaired efficiently throughout the genome. However, the packaging of DNA into nucleosomes is a significant barrier to DNA repair, and the mechanisms of repair in the context of chromatin are poorly understood. Here we show that lysine 56 (K56) acetylation is an abundant modification of newly synthesized histone H3 molecules that are incorporated into chromosomes during S phase. Defects in the acetylation of K56 in histone H3 result in sensitivity to genotoxic agents that cause DNA strand breaks during replication. In the absence of DNA damage, the acetylation of histone H3 K56 largely disappears in G2. In contrast, cells with DNA breaks maintain high levels of acetylation, and the persistence of the modification is dependent on DNA damage checkpoint proteins. We suggest that the acetylation of histone H3 K56 creates a favourable chromatin environment for DNA repair and that a key component of the DNA damage response is to preserve this acetylation.  相似文献   

7.
Smith CE  Llorente B  Symington LS 《Nature》2007,447(7140):102-105
DNA double-strand breaks (DSBs) are potentially lethal lesions that arise spontaneously during normal cellular metabolism, as a consequence of environmental genotoxins or radiation, or during programmed recombination processes. Repair of DSBs by homologous recombination generally occurs by gene conversion resulting from transfer of information from an intact donor duplex to both ends of the break site of the broken chromosome. In mitotic cells, gene conversion is rarely associated with reciprocal exchange and thus limits loss of heterozygosity for markers downstream of the site of repair and restricts potentially deleterious chromosome rearrangements. DSBs that arise by replication fork collapse or by erosion of uncapped telomeres have only one free end and are thought to repair by strand invasion into a homologous duplex DNA followed by replication to the chromosome end (break-induced replication, BIR). BIR from one of the two ends of a DSB would result in loss of heterozygosity, suggesting that BIR is suppressed when DSBs have two ends so that repair occurs by the more conservative gene conversion mechanism. Here we show that BIR can occur by several rounds of strand invasion, DNA synthesis and dissociation. We further show that chromosome rearrangements can occur during BIR if dissociation and reinvasion occur within dispersed repeated sequences. This dynamic process could function to promote gene conversion by capture of the displaced invading strand at two-ended DSBs to prevent BIR.  相似文献   

8.
Sehorn MG  Sigurdsson S  Bussen W  Unger VM  Sung P 《Nature》2004,429(6990):433-437
Homologous recombination is crucial for the repair of DNA breaks and maintenance of genome stability. In Escherichia coli, homologous recombination is dependent on the RecA protein. In the presence of ATP, RecA mediates the homologous DNA pairing and strand exchange reaction that links recombining DNA molecules. DNA joint formation is initiated through the nucleation of RecA onto single-stranded DNA (ssDNA) to form helical nucleoprotein filaments. Two RecA-like recombinases, Rad51 and Dmc1, exist in eukaryotes. Whereas Rad51 is needed for both mitotic and meiotic recombination events, the function of Dmc1 is restricted to meiosis. Here we examine human Dmc1 protein (hDmc1) for the ability to promote DNA strand exchange, and show that hDmc1 mediates strand exchange between paired DNA substrates over at least several thousand base pairs. DNA strand exchange requires ATP and is strongly dependent on the heterotrimeric ssDNA-binding molecule replication factor A (RPA). We present evidence that hDmc1-mediated DNA recombination initiates through the nucleation of hDmc1 onto ssDNA to form a helical nucleoprotein filament. The DNA strand exchange activity of hDmc1 is probably indispensable for repair of DNA double-strand breaks during meiosis and for maintaining the ploidy of meiotic chromosomes.  相似文献   

9.
用组合数学分析了实数编码遗传算法的一点交叉、多点交叉和均匀交叉等三种离散重组算子的组合能力,算子的组合能力算子组合出新染色体数目的大小衡量,分析表明,对同一父染色体对交,一点交叉最多可组合出2(n-1)个新的染色体,多点交叉为2C^kn-1个,均匀交叉为2(2^n-1-1)个,函数优化实验研究表明,在算法中采用何种离散重组算子较为合适与算子的组合能力有关,也与优化问题有关。  相似文献   

10.
The Y chromosome, which in man determines the male sex, is composed of two functionally distinct regions. The pseudoautosomal region is shared between the X and Y chromosome and is probably required for the correct segregation of the sex chromosomes during male meiosis. The second region includes the sex-determining gene(s), the presence of which is necessary for the development of testes. The two regions have contrasting genetic properties: the pseudoautosomal region recombines between the X and Y chromosome; the Y-specific region must avoid recombination otherwise the chromosomal basis of sex-determination breaks down. The pseudoautosomal region is bounded at the distal end by the telomere and at the proximal end by X- and Y-specific DNA. We have found that the proximal boundary was formed by the insertion of an Alu sequence on the Y chromosome early in the primate lineage. Proximal to the Alu insertion there is a small region where similarity between the X and Y chromosomes is reduced and which is no longer subject to recombination.  相似文献   

11.
Frequent chromosomal translocations induced by DNA double-strand breaks   总被引:40,自引:0,他引:40  
Richardson C  Jasin M 《Nature》2000,405(6787):697-700
The faithful repair of DNA damage such as chromosomal double-strand breaks (DSBs) is crucial for genomic integrity. Aberrant repair of these lesions can result in chromosomal rearrangements, including translocations, which are associated with numerous tumours. Models predict that some translocations arise from DSB-induced recombination in differentiating lymphoid cell types or from aberrant repair of DNA damage induced by irradiation or other agents; however, a genetic system to study the aetiology of these events has been lacking. Here we use a mouse embryonic stem cell system to examine the role of DNA damage on the formation of translocations. We find that two DSBs, each on different chromosomes, are sufficient to promote frequent reciprocal translocations. The results are in striking contrast with interchromosomal repair of a single DSB in an analogous system in which translocations are not recovered. Thus, while interchromosomal DNA repair does not result in genome instability per se, the presence of two DSBs in a single cell can alter the spectrum of repair products that are recovered.  相似文献   

12.
Lange J  Pan J  Cole F  Thelen MP  Jasin M  Keeney S 《Nature》2011,479(7372):237-240
In many organisms, developmentally programmed double-strand breaks (DSBs) formed by the SPO11 transesterase initiate meiotic recombination, which promotes pairing and segregation of homologous chromosomes. Because every chromosome must receive a minimum number of DSBs, attention has focused on factors that support DSB formation. However, improperly repaired DSBs can cause meiotic arrest or mutation; thus, having too many DSBs is probably as deleterious as having too few. Only a small fraction of SPO11 protein ever makes a DSB in yeast or mouse and SPO11 and its accessory factors remain abundant long after most DSB formation ceases, implying the existence of mechanisms that restrain SPO11 activity to limit DSB numbers. Here we report that the number of meiotic DSBs in mouse is controlled by ATM, a kinase activated by DNA damage to trigger checkpoint signalling and promote DSB repair. Levels of SPO11-oligonucleotide complexes, by-products of meiotic DSB formation, are elevated at least tenfold in spermatocytes lacking ATM. Moreover, Atm mutation renders SPO11-oligonucleotide levels sensitive to genetic manipulations that modulate SPO11 protein levels. We propose that ATM restrains SPO11 via a negative feedback loop in which kinase activation by DSBs suppresses further DSB formation. Our findings explain previously puzzling phenotypes of Atm-null mice and provide a molecular basis for the gonadal dysgenesis observed in ataxia telangiectasia, the human syndrome caused by ATM deficiency.  相似文献   

13.
Murayama Y  Kurokawa Y  Mayanagi K  Iwasaki H 《Nature》2008,451(7181):1018-1021
Holliday junctions (HJs) are key intermediates in homologous recombination and are especially important for the production of crossover recombinants. Bacterial RecA family proteins promote the formation and branch migration of HJs in vitro by catalysing a reciprocal DNA-strand exchange reaction between two duplex DNA molecules, one of which contains a single-stranded DNA region that is essential for initial nucleoprotein filament formation. This activity has been reported only for prokaryotic RecA family recombinases, although eukaryotic homologues are also essential for HJ production in vivo. Here we show that fission yeast (Rhp51) and human (hRad51) RecA homologues promote duplex-duplex DNA-strand exchange in vitro. As with RecA, a HJ is formed between the two duplex DNA molecules, and reciprocal strand exchange proceeds through branch migration of the HJ. In contrast to RecA, however, strand exchange mediated by eukaryotic recombinases proceeds in the 3'-->5' direction relative to the single-stranded DNA region of the substrate DNA. The opposite polarity of Rhp51 makes it especially suitable for the repair of DNA double-strand breaks, whose repair is initiated at the processed ends of breaks that have protruding 3' termini.  相似文献   

14.
The genetic basis of Haldane's rule   总被引:7,自引:0,他引:7  
J A Coyne 《Nature》1985,314(6013):736-738
'Haldane's rule', formulated by J. B. S. Haldane in 1922, states that: "When in the F1 offspring of two different animal races one sex is absent, rare, or sterile, that sex is the heterozygous [heterogametic] sex". His rule is now known to apply in mammals, lepidopterans, birds, orthopterans and dipterans. In Drosophila, for example, Bock cites 142 cases of interspecific hybridizations that produce one sterile and one fertile sex in the offspring, all but one of these crosses yielding sterile XY males and fertile XX females. Despite much speculation, however, the genetic basis of Haldane's rule remains unknown. Haldane himself rejected the simple explanation that males are innately more sensitive than females to the effects of hybridization because groups with heterogametic females (such as birds and butterflies) usually show female sterility in hybrids, so that heterogamety itself is the critical feature. He and others suggested that heterogametic infertility or inviability in hybrids arises by a genetic imbalance between X chromosomes and autosomes. An alternative explanation is that this syndrome is caused by a mismatch of X and Y chromosomes. Here I show that in the Drosophila melanogaster subgroup, Haldane's rule for fertility apparently arises from a genetic interaction between X and Y chromosomes and not from an imbalance between sex chromosomes and autosomes. This finding has important implications for understanding the evolution of interspecific reproductive isolation.  相似文献   

15.
Binding of double-strand breaks in DNA by human Rad52 protein   总被引:23,自引:0,他引:23  
Van Dyck E  Stasiak AZ  Stasiak A  West SC 《Nature》1999,398(6729):728-731
Double-strand breaks (DSBs) in DNA are caused by ionizing radiation. These chromosomal breaks can kill the cell unless repaired efficiently, and inefficient or inappropriate repair can lead to mutation, gene translocation and cancer. Two proteins that participate in the repair of DSBs are Rad52 and Ku: in lower eukaryotes such as yeast, DSBs are repaired by Rad52-dependent homologous recombination, whereas vertebrates repair DSBs primarily by Ku-dependent non-homologous end-joining. The contribution of homologous recombination to vertebrate DSB repair, however, is important. Biochemical studies indicate that Ku binds to DNA ends and facilitates end-joining. Here we show that human Rad52, like Ku, binds directly to DSBs, protects them from exonuclease attack and facilitates end-to-end interactions. A model for repair is proposed in which either Ku or Rad52 binds the DSB. Ku directs DSBs into the non-homologous end-joining repair pathway, whereas Rad52 initiates repair by homologous recombination. Ku and Rad52, therefore, direct entry into alternative pathways for the repair of DNA breaks.  相似文献   

16.
Human CtIP promotes DNA end resection   总被引:3,自引:0,他引:3  
Sartori AA  Lukas C  Coates J  Mistrik M  Fu S  Bartek J  Baer R  Lukas J  Jackson SP 《Nature》2007,450(7169):509-514
In the S and G2 phases of the cell cycle, DNA double-strand breaks (DSBs) are processed into single-stranded DNA, triggering ATR-dependent checkpoint signalling and DSB repair by homologous recombination. Previous work has implicated the MRE11 complex in such DSB-processing events. Here, we show that the human CtIP (RBBP8) protein confers resistance to DSB-inducing agents and is recruited to DSBs exclusively in the S and G2 cell-cycle phases. Moreover, we reveal that CtIP is required for DSB resection, and thereby for recruitment of replication protein A (RPA) and the protein kinase ATR to DSBs, and for the ensuing ATR activation. Furthermore, we establish that CtIP physically and functionally interacts with the MRE11 complex, and that both CtIP and MRE11 are required for efficient homologous recombination. Finally, we reveal that CtIP has sequence homology with Sae2, which is involved in MRE11-dependent DSB processing in yeast. These findings establish evolutionarily conserved roles for CtIP-like proteins in controlling DSB resection, checkpoint signalling and homologous recombination.  相似文献   

17.
Chromosomes are segregated by two antiparallel arrays of microtubules arranged to form the spindle apparatus. During cell division, the nucleation of cytosolic microtubules is prevented and spindle microtubules nucleate from centrosomes (in mitotic animal cells) or around chromosomes (in plants and some meiotic cells). The molecular mechanism by which chromosomes induce local microtubule nucleation in the absence of centrosomes is unknown, but it can be studied by adding chromatin beads to Xenopus egg extracts. The beads nucleate microtubules that eventually reorganize into a bipolar spindle. RCC1, the guanine-nucleotide-exchange factor for the GTPase protein Ran, is a component of chromatin. Using the chromatin bead assay, we show here that the activity of chromosome-associated RCC1 protein is required for spindle formation. Ran itself, when in the GTP-bound state (Ran-GTP), induces microtubule nucleation and spindle-like structures in M-phase extract. We propose that RCC1 generates a high local concentration of Ran-GTP around chromatin which in turn induces the local nucleation of microtubules.  相似文献   

18.
DNA double-strand breaks (DSBs) are generated by the recombination activating gene (RAG) endonuclease in all developing lymphocytes as they assemble antigen receptor genes. DNA cleavage by RAG occurs only at the G1 phase of the cell cycle and generates two hairpin-sealed DNA (coding) ends that require nucleolytic opening before their repair by classical non-homologous end-joining (NHEJ). Although there are several cellular nucleases that could perform this function, only the Artemis nuclease is able to do so efficiently. Here, in vivo, we show that in murine cells the histone protein H2AX prevents nucleases other than Artemis from processing hairpin-sealed coding ends; in the absence of H2AX, CtIP can efficiently promote the hairpin opening and resection of DNA ends generated by RAG cleavage. This CtIP-mediated resection is inhibited by γ-H2AX and by MDC-1 (mediator of DNA damage checkpoint 1), which binds to γ-H2AX in chromatin flanking DNA DSBs. Moreover, the ataxia telangiectasia mutated (ATM) kinase activates antagonistic pathways that modulate this resection. CtIP DNA end resection activity is normally limited to cells at post-replicative stages of the cell cycle, in which it is essential for homology-mediated repair. In G1-phase lymphocytes, DNA ends that are processed by CtIP are not efficiently joined by classical NHEJ and the joints that do form frequently use micro-homologies and show significant chromosomal deletions. Thus, H2AX preserves the structural integrity of broken DNA ends in G1-phase lymphocytes, thereby preventing these DNA ends from accessing repair pathways that promote genomic instability.  相似文献   

19.
Lee K  Zhang Y  Lee SE 《Nature》2008,454(7203):543-546
Chromosome translocations are frequently associated with many types of blood-related cancers and childhood sarcomas. Detection of chromosome translocations assists in diagnosis, treatment and prognosis of these diseases; however, despite their importance to such diseases, the molecular mechanisms leading to chromosome translocations are not well understood. The available evidence indicates a role for non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs) in their origin. Here we develop a yeast-based system that induces a reciprocal chromosome translocation by formation and ligation of breaks on two different chromosomes. We show that interchromosomal end joining is efficiently suppressed by the Tel1- and Mre11-Rad50-Xrs2-dependent pathway; this is distinct from the role of Tel1 in telomeric integrity and from Mec1- and Tel1-dependent checkpoint controls. Suppression of DSB-induced chromosome translocations depends on the kinase activity of Tel1 and Dun1, and the damage-induced phosphorylation of Sae2 and histone H2AX proteins. Tel1- and Sae2-dependent tethering and promotion of 5' to 3' degradation of broken chromosome ends discourage error-prone NHEJ and interchromosomal NHEJ, preserving chromosome integrity on DNA damage. Our results indicate that, like human ATM, Tel1 serves as a key regulator for chromosome integrity in the pathway that reduces the risk for DSB-induced chromosome translocations, and are probably pertinent to the oncogenic chromosome translocations in ATM-deficient cells.  相似文献   

20.
Pei H  Zhang L  Luo K  Qin Y  Chesi M  Fei F  Bergsagel PL  Wang L  You Z  Lou Z 《Nature》2011,470(7332):124-128
p53-binding protein 1 (53BP1) is known to be an important mediator of the DNA damage response, with dimethylation of histone H4 lysine 20 (H4K20me2) critical to the recruitment of 53BP1 to double-strand breaks (DSBs). However, it is not clear how 53BP1 is specifically targeted to the sites of DNA damage, as the overall level of H4K20me2 does not seem to increase following DNA damage. It has been proposed that DNA breaks may cause exposure of methylated H4K20 previously buried within the chromosome; however, experimental evidence for such a model is lacking. Here we found that H4K20 methylation actually increases locally upon the induction of DSBs and that methylation of H4K20 at DSBs is mediated by the histone methyltransferase MMSET (also known as NSD2 or WHSC1) in mammals. Downregulation of MMSET significantly decreases H4K20 methylation at DSBs and the subsequent accumulation of 53BP1. Furthermore, we found that the recruitment of MMSET to DSBs requires the γH2AX-MDC1 pathway; specifically, the interaction between the MDC1 BRCT domain and phosphorylated Ser?102 of MMSET. Thus, we propose that a pathway involving γH2AX-MDC1-MMSET regulates the induction of H4K20 methylation on histones around DSBs, which, in turn, facilitates 53BP1 recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号