共查询到16条相似文献,搜索用时 49 毫秒
1.
S-粗集(singular rough sets)是对Z.Pawlak粗集的改进,单向S-粗集对偶(dual of one direction sin-gular rough sets)是S-粗集的基本形式之一。利用单向S-粗集对偶,给出数据属性,数据筛选-过滤概念,数据筛选-过滤序定理,合成数据筛选-过滤定理,及数据筛选-过滤准则。利用这些结果,给出应用。单向S-粗集对偶是动态数据筛选-过滤研究的一个新工具。 相似文献
2.
函数单向S-粗集对偶(dual of function one direction singular rough set),具有单向动态特性和规律特性;它是函数S-粗集(function singular rough set)的基本形式之一。函数S-粗集是在改进S-粗集的基础上提出的。利用函数单向S-粗集对偶的动态特性和规律特性,给出f·-规律,f·-规律的属性特征,属性距离,f·-冗余规律概念。利用这些概念,提出规律与它的f·-属性控制,并给出f·-属性控制定理,f·-属性控制判定定理,f·-属性控制识别准则与应用。 相似文献
3.
S-粗集与新材料发现-识别 总被引:10,自引:2,他引:10
史开泉 《系统工程与电子技术》2006,28(3):383-388
S-粗集(singular rough sets)具有两类形式:单向S-粗集(one direction S-rough sets)和双向S-粗集(two direction S-rough sets)。S-粗集具有遗传特征、记忆特征。把S-粗集与材料科学进行学科渗透,互补共享,给出新金属材料的发现-识别的讨论,利用属性生成模型给出新金属材料的属性值分析,给出的结果与实际相符。S-粗集是粗集研究的一个新方向,是新材料发现-识别的一个新的数学工具。 相似文献
4.
利用单向S-粗集,给出单向S-粗决策规律生成方法;给出上决策规律,下决策规律,单向S-粗决策规律核,单向S-粗决策规律带,单向S-粗决策规律壳的概念;利用这些概念,提出下决策规律传递定理,上决策规律传递定理,F-分离的属性定理,粗决策规律挖掘定理,与粗决策规律挖掘准则。 相似文献
5.
函数S-粗集与粗规律挖掘-分离 总被引:23,自引:4,他引:23
研究了函数S-粗集的本质和特性,及其用于挖掘系统的潜在规律。利用函数S-粗集(单向函数S-粗集,双向函数S-粗集)的数学结构和特性,给出系统中粗规律模型的生成方法。给出了利用函数S-粗集进行系统中的粗规律挖掘与分离的讨论,和系统中粗规律分离的应用。例子证明,函数S-粗集是系统规律挖掘的一个有力工具。 相似文献
6.
7.
针对因决策因素个数的减少而导致的决策精度降低的情况,提出了一种基于单向变异S-概率粗集的动态决策方法。利用单向变异S-概率粗集的属性动态迁移特性,结合知识库中的统计信息,讨论了单向变异S-概率粗集模型的属性概率性质。利用上述性质的讨论,给出了一个具体的军事动态决策实例,从而证明该方法可以有效地提高决策精度。 相似文献
8.
函数S-粗集是以函数等价类定义的,它具有规律特性,图像具有特征,特征存在着规律,将函数S-粗集的规律特性嫁接,应用到识别理论中。给出图像特征F-下近似规律,F-上近似规律的生成,及规律模型,给出图像特征规律F-识别对结构,并对图像F-识别给出特性分析。图像F-识别是一种新的识别方法,已经成为识别理论研究中的一个新的研究方向。 相似文献
9.
介绍了S-粗集的概念, 结合其动态迁移特性给出了可以适应复杂背景和含噪环境的图像S-粗集表示模型, 使静态目标可以将"不好"特性像素点迁移出去. 利用粗糙熵平衡目标和背景粗糙度对边界的影响, 提出一种更具适应性的 图像阈值分割算法. 为了适应离散点的迁移, 同时避免粒度大小的选择, 结合包含度概念给出了图像变精度S-粗集表示模型, 利用精度参数来 控制调节获取最佳分割阈值, 实现目标提取. 仿真实验表明, 所提出算法具有更好的图像分割效果. 相似文献
10.
F-规律推理与规律挖掘 总被引:4,自引:0,他引:4
对S-粗集给出改进,把函数这个分析工具引入到S-粗集中,提出函数S-粗集(function singularrough sets)。函数单向S-粗集(function one direction singular rough sets)是函数S-粗集的基本形式之一,它是以R-函数等价类[u]定义的;ui∈[u]是一个函数,函数是一个规律。函数单向S-粗集具有单向动态特性与规律特征:利用函数单向S-粗集的规律特征,给出F-规律推理与F-规律推理的规律挖掘概念,提出F-规律推理的规律挖掘定理,F-规律推理的规律挖掘原理与F-规律推理的规律挖掘应用。F-规律推理的规律挖掘是寻找系统中未知规律研究的一个新的研究方向。 相似文献
11.
Singular rough sets (S-rough sets) have three classes of forms: one-directional S-rough sets, dual of one-directional S-rough sets, and two-directional S-rough sets. Dynamic, hereditary, mnemonic, and hiding properties are the basic characteristics of S-rough sets. By using the S-rough sets, the concepts of f-hiding knowledge, F-hiding knowledge, hiding degree, and hiding dependence degree are given. Then, both the hiding theorem and the hiding dependence theorem of hiding knowledge are proposed. Finally, an application of hiding knowledge is discussed. 相似文献
12.
Singular rough sets (S-rough sets) have three classes of forms: one-directional S-rough sets, dual of onedirectional S-rough sets, and two-directional S-rough sets. Dynamic, hereditary, mnemonic, and hiding properties are the basic characteristics of S-rough sets. By using the S-rough sets, the concepts of f-hiding knowledge, F-hiding knowledge, hiding degree, and hiding dependence degree are given. Then, both the hiding theorem and the hiding dependence theorem of hiding knowledge are proposed. Finally, an application of hiding knowledge is discussed. 相似文献
13.
Function one direction S-rough sets have dynamic characteristics and law characteristics. By using the function one direction S-rough sets, this article presents the concepts of the f-hiding law, F-hiding law, f-hiding law dependence and F-hiding law dependence. Based on the concepts above, this article proposes the hiding-dependence theorem of f-hiding laws, the hiding-dependence theorem of F-hiding laws, the hiding-dependence separation theorem, the hiding dependencs-discovery principle of unknown laws. Finally, the application of the hiding dependence of hiding laws in the discovery of system laws is given. 相似文献
14.
S-rough sets and knowledge separation 总被引:79,自引:12,他引:79
Shi Kaiquan . School of Mathematics System Sciences Liaocheng University Liaocheng P. R. China . School of Mathematics System Sciences Shandong University Jinan P. R. China 《系统工程与电子技术(英文版)》2005,16(2)
1.INTRODUCTION GivensetX U,Risanequivalencerelationfamily ofU;[x]R;isanR equivalenceclass,andwehave Z.Pawlakroughsets(R-(X),R-(X))[10].Inset Uthereareriskelementswhichexistinriskestima tionsystem,earlywarninganalysissystem,etc.We can’tascertaintheirincursionorintrusiontosetX Uinprevious;theseelementshavethefollowingtwo features:u∈U,u∈-X f(u)=x∈X;x∈X f(x)=u∈-X.Inotherwords,duetotheeffectof f∈F,elementuwhichisnotinXturnsintof(u)=x,f(u)goesintoX;elementxwhichisinX,turnsinto f… 相似文献
15.
Function S-rough sets and mining-discovery of rough law in systems 总被引:10,自引:0,他引:10
Shi Kaiquan & Xia Jiarong School of Mathematics System Sciences Shandong Univ. Jinan Shandong P.R.China Dept. of Mathematics Hangzhou Teachers College Hangzhou Zhejiang P.R.China 《系统工程与电子技术(英文版)》2006,17(4):919-926
1. INTRODUCTION S-rough sets (singular rough sets) was presented in Ref. [3] in 2002, and defined on α -element equival- ence class [x] with dynamic characteristic. S-rough sets has more advantages than Z.Pawlak’s rough sets[24]. S-rough sets has been applied in dynamic object recognition[21], mechanical engineering[22] and information science[8-13]. In 2005, function S-rough sets was put forward in Refs. [1,2], and is defined on α -function equivalence class [u] with dynamic charact… 相似文献
16.
Function S-rough sets has the properties of dynamics, heredity, and memory. Function S-rough sets is penetrated and crossed with the issue of economic law forecast, then a new forecast model based on function S-rough sets namely the two law forecast model is proposed, which includes upper law forecast model and lower law forecast model; and its' implement algorithm is given. FinaLly, the validity of the model is demonstrated by the forecast for region economic development of Hainan Province. 相似文献