首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
将二维主分量分析方法与加权的方法相结合,给出了一种双向二维加权主分量分析方法用于面部表情特征提取,该方法从水平和垂直两个方向对图像矩阵进行降维处理,大幅降低了所提取的特征数目;且考虑到面部不同部位包含不同的表情信息这一特点,对各个特征赋予不同的权重系数.经实验验证了该方法的有效性.  相似文献   

2.
研究了利用从扬声器响应信号中提取特征进行扬声器故障识别的方法.首先通过小波包分解及重构得到扬声器响应信号的初始特征;然后利用主分量分析(Principal Component Analysis,PCA)的方法对初始特征进行降维处理,并得到最终特征;设计神经网络分类器,并将得到的最终特征输入分类器进行识别.实验表明,该特征提取方法在满足扬声器故障检测识别率的同时,降低了特征提取过程中的计算量,为扬声器故障诊断提供了一种实用方法.  相似文献   

3.
目标的雷达散射截面(RCS)包含了丰富的目标类别信息,如何有效利用目标RCS特征对空间目标的雷达识别具有重要意义.文中提取中心矩作为特征向量,采用主分量分析(PCA)进一步进行特征压缩,利用支撑矢量机(SVM)分类算法来实现识别.基于实测数据的仿真实验结果表明,该方法具有较好的识别性能和推广能力.  相似文献   

4.
二维主元素分析(2DPCA)是基于二维图像,而不是像PCA一样基于一维的向量化图像,是一种用于人脸识别中的典型的特征提取技巧,与传统的PCA方法相比,它具有更高的识别率和更短的特征提取时间。运用2DPCA的手写体数字识别方法,与PCA方法在误识率上进行了数值对比试验。然后,在特征提取阶段进行改进,它是一个样本图像分组策略,称之为NetPCA,此方法比较好的综合了统计特征和结构特征两种提取方法。  相似文献   

5.
针对脑机接口(brain computerinterface,BCI)系统特征提取较慢的现状,提出基于约束独立分量分析(constrainedindependentcomponentanalysis,cICA)的P300特征提取方法.首先,针对各位P300实验被试,通过EEG图像研究其特有P300时域特性;然后,根据P300特性构建参考信号,并将参考信号与独立分量分析(independentcomponentanalysis,ICA)方法结合,基于64导联EEG,提取出与P300相关度最大的独立分量;最后,依据提取出的独立分量构造3维特征向量进行分类.实验采用线性分类器,针对BCICompetitionIIdatasetIIb和BCICompetitionIIIdatasetII两组公共数据集进行了验证.结果表明,提出方法在3次叠加平均下识别正确率达671%,15次达952%,在相同实验条件下,分类时间也较其他方法缩短.  相似文献   

6.
【目的】为实现油茶果实尺寸及大小分布的快速获取,提出一种基于相机拍摄的油茶果形状特征参数批量化提取方法。【方法】首先将采摘油茶果摆放于含刻度尺的背景板,利用相机快速获取油茶果图像并进行校正;然后利用Mask R-CNN模型对图像油茶果进行快速检测计数,根据生成的掩码采用椭圆拟合法统计油茶果特征参数(长轴长、短轴长、面积、周长)的像元个数;最后结合背景板刻度尺计算的像元大小,获取油茶果特征参数,同时利用实测值进行精度验证。【结果】Mask R-CNN模型的平均识别准确率和召回率分别为99.55%和91.19%,测度值为95.22%,满足用于统计油茶果形状特征参数的要求。对油茶果面积的估测精度最高,决定系数(R2)、平均绝对误差(MAE)、均方根误差(RMSE)分别为0.999 0、10.75 mm2、14.88 mm2;其次为周长和长轴长,短轴长的估测精度最低,其R2、MAE、RMSE分别为0.864 7、3.15 mm、3.74 mm。【结论】该方法实现了油茶果采摘后的快速准确计数以及形状特征参数的批量化提取,可为大量果实特征参数的快速准确检测提供参考,为指导油茶果实分级和快速测产提供科学依据。  相似文献   

7.
甘薯水分关系的主分量分析   总被引:1,自引:0,他引:1  
运用多元统计数学中主分量分析的方法计算和比较了甘薯离体叶片的水势、相对含水量、束缚水、水分饱和亏缺、质膜透性、丙二醛和游离脯氨酸含量等植物水分生理指标的变化。结果指出:水势、相对含水量和丙二醛等对水分胁迫作出反应的敏感程度较高。表明主分量分析方法是综合评价甘薯抗旱生理指标的一种好的研究方法。  相似文献   

8.
基于核函数主元分析的机械设备状态识别   总被引:4,自引:0,他引:4  
研究了核函数主元分析在机械故障模式分类中的应用,通过计算原始空间的内积核函数实现原始数据空间到高维数据空间的非线性映射,再对高维数据作主元分析,求取更易于分类的核函数主元,实验表明,核函数主元分析更适于提取故障信号的非线性特征,能有效区分不同的故障模式,可以应用于机械设备的状态识别。  相似文献   

9.
基于主分量特征与独立分量特征的人脸识别   总被引:1,自引:0,他引:1  
PCA方法抽取出的主分量特征与ICA方法抽取出的独立分量特征是对原数据的两类不同描述.PCA是一种基于二阶统计的最小均方误差意义上的最优维数压缩技术,PCA方法所抽取特征的各分量之间是统计不相关的.ICA方法使用数据的二阶和高阶信息抽取数据的独立分量特征.文章对这两种方法做了理论上的比较,并通过实验证明ICA算法提取的特征子空间在人脸识别应用中更有效,识别率更高.  相似文献   

10.
基于分形维和独立分量分析的声发射特征提取   总被引:2,自引:0,他引:2  
针对噪声对声发射信号分形维的影响,提出了一种基于分形维和独立分量分析(ICA)的结构材料声发射信号特征提取方法.文中首先给出了分形维的概念,并从理论上分析了噪声对声发射信号分形维的影响.接着引入ICA进行信号预处理,以提取源独立的去噪信号进行分形维计算.最后进行了多组铅心模拟声发射实验.实验结果表明,不同的声发射源和传播介质下声发射信号的分形维表现出明显不同的特征,且与去噪前的分形维相比,能够更好地对应声发射事件数.分形维具有受研究者主观影响小、易于标准化的优点,可以作为一种新的结构材料声发射的特征识别方法.  相似文献   

11.
分析了主成分分析(PCA)与核主成分分析(kPCA)的基本原理,比较了两者在处理数据方面的性能,得出了kPCA比PCA在处理非线性可分数据方面具有优势的结论.依据几何绕射理论(GTD),通过Matlab仿真方法得到HRRP(高分辨距离像)数据,并以这些数据作为训练和测试样本,结合SVM分类方法,分别测试比较了基于4种不同核函数的分类识别性能,得出基于高斯核函数主成分分析的自动目标识别系统性能明显好于其他3种核函数的结论.  相似文献   

12.
微表情持续时间短、表达强度低,给训练有效模型带来了挑战。针对此问题,提出了一种基于像素特征的微表情识别方法。对图像序列的面部区域进行裁剪,消除背景噪声;将每一帧的像素矩阵与第一帧(中性表情)做差处理,提取面部变化;对做差的结果累加,进一步突出面部表情;使用搭建的浅层CNN网络进行分类。在3个公共微表情数据集组成的交叉数据集上进行K折(K-fold)交叉验证实验中,所提方法的3个评价指标ACC(accuracy)、UF1(unweighted F1-score)和UAR(unweighted Average Recall)分别达到了0.830 4、0.782 7和0.794 4,表明了该方法的有效性。与LBP-TOP等8个模型的对比实验中,所提方法的指标明显优于对比模型,验证了该方法的优越性。  相似文献   

13.
外耳形状特征和内耳结构特征结合的人耳特征提取   总被引:8,自引:0,他引:8  
针对人耳的生物特征提出了一种人耳的形状特征和结构特征相结合的识别方法. 首先提取外耳最长轴,即外耳轮廓边缘点的最长连线. 利用外耳长轴把外耳曲线分成两部分,用最小二乘法对这两段曲线分别进行多项式曲线拟合,拟合多项式函数的系数作为外耳特征向量. 同时长轴与内耳曲线的交点作为内耳特征点,特征点之间连线的长度与长轴长度的比值作为内耳特征向量. 长轴的相对不变性保证了特征向量具有缩放、平移和旋转不变性. 实验结果表明此方法在噪声情况下具有较强的鲁棒性.  相似文献   

14.
提出一种新的基于位平面图像的特征抽取方法.该方法通过对原始图像进行"位切片",将1幅图像分解为8幅位平面图像,然后针对不同的位平面图像的特点,对不同的单幅位平面图像和合成的位平面图像进行特征抽取,为从复杂的人脸图像中抽取出有效的鉴别特征提供了一种有效措施.ORL标准人脸库中的实验数据验证了该方法的有效性.  相似文献   

15.
基于主成分分析和Softmax回归模型的人脸识别方法   总被引:1,自引:0,他引:1  
文章介绍一种基于主成分分析(principal component analysis,PCA)和Softmax回归模型相结合的人脸识别方法,该方法通过PCA对整幅图像提取特征,然后将提取的特征经过非线性变换输入到Softmax回归模型中。将主成分提取特征看成是单层神经网络,将它与Softmax回归模型构成的级联结构看作是2层神经网络,在神经网络的训练过程中,主成分的特征向量可以微调。在不同人脸数据库上的实验表明,相比于传统的只用PCA降维的方法,本文方法可达到较高的识别率。  相似文献   

16.
基于谱图理论展开针对基因表达谱数据的分类研究,将反映图结构的特征表示引入到基因表达谱数据分类中,从而高维空间离散点分布问题便可以转化成为具有结构信息的图问题.文中对基因表达谱数据样本点构造高斯权邻接矩阵,SVD分解后,采用特征记分准则进行筛选,找出最大限度区分肿瘤样本与正常样本的主分量作为样本特征,输入KNN分类器进行分类,通过对白血病两个亚型(ALL与AML)与结肠癌表达谱数据进行实验,证明了文中方法的可行性与有效性.  相似文献   

17.
基于核主成分分析和支持向量机的飞机舱音信号识别   总被引:1,自引:0,他引:1  
为了提高飞机事故原因的调查准确性与实时性,提出了一种基于核主成分分析和支持向量机的舱音背景声识别方法.首先提取和分析了飞机驾驶舱话音记录器中所记录背景声信号的特征参数,然后分别以多项式核函数、sigmoid核函数和高斯核函数3种核函数作为内积,对3种核函数的降维特性进行了对比分析,最后将核方法与支持向量机结合,实现对舱音背景声的分类识别.实验结果表明:通过基于不同核函数的主成分分析方法与支持向量机的结合比较,确定以高斯核函数为内积的SVM分类方法具有较好的分类效果.  相似文献   

18.
基于ICA和BP神经网络的人耳图像识别   总被引:1,自引:0,他引:1  
提出了一种独立分量分析和BP神经网络相结合的人耳识别新方法(ICABP法).首先采用快速独立分量分析方法提取人耳图像的独立基图像和投影向量,然后采用改进的三层BP神经网络进行分类识别.该方法将ICA的空间局部特征提取功能和BP神经网络的自适应功能有机地结合起来,增强了系统的鲁棒性.实验表明,ICABP法取得了很高的识别率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号