首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在室外光线追踪通信场景下,针对毫米波大规模多输入多输出(multiple input multiple output,MI-MO)信道具有稀疏特性、系统受噪声因素影响导致信道估计精度低的问题,提出一种基于图像去噪的注意力机制卷积神经网络信道估计方法.首先,设定参数产生模拟真实环境的数据集,将所产生的信道矩阵看作二维图像...  相似文献   

2.
一种基于极几何和单应约束的图像匹配算法   总被引:11,自引:0,他引:11  
提出一种综合应用极几何和单应约束的图像特征点匹配算法,首先使用互相关法对图像特征点集进行初始匹配,然后运用RANSAC方法鲁棒地估计基本矩阵和单应矩阵并相应地剔除错误匹配点,最后利用优化后的基本矩阵和单应矩阵引导匹配以获得更多、更精确的匹配点。大量真实图像实验表明,所提出的算法能够产生更多的匹配点并具有较高的匹配精度。  相似文献   

3.
针对低轨道卫星信道质量变化迅速、信道参数“过时”的问题, 提出了一种基于注意力机制的卷积神经和双向长短时记忆神经网络(attention-convolutional neural network and bi-directional long-short term memory neural network, AT-CNN-BiLSTM)融合的信道预测方法。该方法由信号预处理、网络训练和信号预测3部分组成。首先在高斯白噪声条件下模拟室外卫星信号, 得到卫星信号的训练集和测试集; 然后将训练集输入构建的训练网络进行特征提取; 最后将测试数据输入网络进行预测分析。仿真结果表明, 在与其他4种人工智能方法的对比中, 所提出的混合神经网络能够在较快的收敛速度下达到较高的准确率(91.8%), 有效地缓解了低轨道卫星信道参数“过时”的现状, 对提升卫星通信质量和节省卫星信道资源有良好的改善作用。  相似文献   

4.
随着我国各级政府大力推动垃圾强制分类,分类回收各环节中实现标准化、自动化的垃圾分类识别需要适合云端部署的高准确率、低延时要求的细粒度图像分类模型.本文发挥深度迁移学习的优势建立了一套端到端的迁移学习网络架构GANet (garbage neural network);针对垃圾分类中类别易混淆、背景干扰等挑战,提出一种新型的像素级空间注意力机制PSATT (pixel-level spatial attention).为克服类别多和样本不平衡挑战,提出使用标签平滑正则化损失函数;为改善收敛速度以及模型稳定性与泛化性,提出了阶梯形OneCycle学习率控制方法,并给出了结合Rectified Adam (RAdam)优化方法和权重平滑处理技术的组合使用策略.实验使用了"华为云人工智能大赛.垃圾分类挑战杯"提供的按照深圳市垃圾分类标准标注的训练数据,验证了GANet在垃圾分类问题中的显著效果,获得了全国二等奖(第2名);同时,提出的PSATT机制优于对比方法,且在不同主干网络架构上均得到了提升,具有良好的通用性.本文提出的GANet架构、PSATT机制和训练策略不仅具有重要的工程参考价值,也具有较好的学术价值.  相似文献   

5.
传统的辐射源识别通过比对、匹配辐射源信号与雷达数据库来识别,这种方法很难满足战时高效、快速和准确的识别要求.随着机器学习方法的提出,诸如支持向量机等算法在辐射源识别领域的运用,可以满足战时高效、快速的识别要求,但这种方法在低信噪比环境下,辐射源识别准确率低.针对上述问题,采用深度学习,引入注意力机制和特征融合方法,提出...  相似文献   

6.
针对现有的CNN模型在水稻叶部病害的识别中准确率较低的问题,提出了一种结合并行结构和残差结构的混合卷积神经网络模型PRC-Net(parallel residual with coordinate attention network)。引入并行结构,提高卷积的感受野;结合残差结构,使特征信息完整的连续传递;在骨干模型PR-Net中嵌入改进的空间注意力机制,增强对不同尺度病斑特征信息的凝聚程度;为进一步提升病害识别的准确率,并减少模型的训练时间和推理时间,通过改变加权方式对模型结构进行优化。仿真结果表明:与InceptionResNetV2等分类模型相比,PRC-Net具有更少的训练参数、更短的训练时间和更高的识别精度,性能优于其他作物病害识别模型。  相似文献   

7.
讨论了一种基于复数小波变换的景像匹配算法 ,并以此算法为基础给出了一个高效的景像匹配模型。依据生物视觉的空间频域通路思想 ,利用复数小波移动不变性 (shiftinvariance)和实数离散小波快速算法 (Mallat快速算法 )将图像分解成多层 ,模拟生物视觉的感知过程 ,分别在高、低空间频域内进行了由粗到精的快速匹配。通过实验证明 ,与传统的景像匹配算法相比具有速度快、匹配概率高、抗干扰能力强等优点。  相似文献   

8.
在合成孔径雷达(synthetic aperture radar, SAR)图像应用领域, 对SAR图像中飞机目标的检测备受关注。针对现有检测算法模型运算复杂度高、检测性能较低的问题, 提出一种基于深度可分离卷积神经网络与注意力机制的SAR图像飞机检测算法。首先使用深度可分离卷积神经网络提取图像特征, 同时在网络中引入逆残差块, 以有效防止通道数压缩引起的特征信息丢失问题; 其次在网络中引入多尺度空洞卷积—空间注意力模块和全局上下文通道注意力模块, 通过重新分配显著区域和各特征图更有代表性的权值, 以更好地捕捉空间有效信息和通道间语义相关性, 提高模型特征表达能力; 最后在SAR飞机数据集(SAR aircraft dataset, SAD)上进行对比实验验证。实验结果表明, 所提算法具有更好的检测效果, 平均准确率达到86.3%, 检测速度达到22.4 fps/s。  相似文献   

9.
交互式电子手册是提高各类装备保障信息化、智能化的关键技术之一,针对其检索模态单一的问题,以其数据中图文描述为研究对象,提出一种融合注意力机制的细粒度跨模态检索算法。针对数据中图像简图较多、色彩单一等特点,特征提取模块使用Vision Transformer模型和Transformer编码器分别获得图文的全局和局部特征;使用注意力机制在图文模态间及模态内部挖掘细粒度信息,加入文本对抗训练增强模型泛化能力,采用跨模态联合损失函数对模型进行约束。在Pascal Sentence数据集和自建数据集上进行验证,所提方法的平均精度均值分别达到了0.964和0.959,较基准模型(深度监督跨模态检索)分别提升了0.248和0.214。  相似文献   

10.
基于卷积神经网络的小型建筑物检测算法   总被引:1,自引:0,他引:1  
针对基于传统卷积神经网络的建筑物目标检测算法对于小型建筑物检测准确率低的问题, 提出一种基于Mask-区域卷积神经网络(Mask-region convoluional neural networks, Mask-RCNN)模型的小目标检测算法模型。该模型对Mask-RCNN模型中的特征提取网络进行了改进, 设计了一种带有注意力机制的多尺度组卷积神经网络, 有效解决了小目标有用特征较少且易被背景特征和噪声干扰的问题。航拍图像实验结果表明, 改进的检测模型使小型建筑物目标检测准确率较原始Mask-RCNN模型提升了28.9%, 达到了0.663。并且整体检测准确率达到了0.843, 有效提升了航拍建筑物检测准确性。  相似文献   

11.
复杂电磁环境中, 针对低信噪比条件下现有神经网络识别算法对于通信电台识别准确率不高的问题, 提出一种结合双层注意力机制和残差网络的通信辐射源个体识别方法。首先, 以空间注意模块和通道注意模块构成注意力机制。其次, 在一维残差网络中嵌入双层注意力机制, 提高对关键特征的学习能力。最后, 在实际数据集上验证算法的有效性。实验证明, 相比于残差神经网络算法, 所提方法既能保持模型较好的稳定性又在数据集上有明显的提升效果。  相似文献   

12.
信贷评估模型可加快放贷效率、缩减放贷时间。利用Pytorch深度学习框架,组合Bag-of-Words及Bert中多头注意力机制得到BM-Linear评估模型,同时在引入多组信贷训练集的前提下,创造性地构建参数独立训练及参数共用训练的对比实验,探究BM-Linear的优异性。研究表明:BM-Linear首先弱化与信贷训练集的对应关系,解决信贷模型受限于信贷场景问题,减少因反复训练模型所造成的放贷效率低下现象;其次,忽略缺失特征并将离散特征转为信贷文本,降低特征处理造成的信贷干扰,提高信贷评估效率;最后,克服因词袋与信贷词语对应关系所带来的词向量固化问题,实现动态词向量过程,进而提高评估准确率。所提出的BM-Linear模型,可为信贷机构高效评估快速放贷提供支持。  相似文献   

13.
为有效解决特定辐射源的个体识别问题, 提出一种基于Hilbert-Huang变换与对抗训练相结合的方法。首先根据辐射源硬件差异, 建立辐射源信号的数学模型; 其次, 对信号进行Hilbert-Huang变换得到Hilbert谱; 然后, 在预处理过程中, 从信号所有的Hilbert谱时频点对应的能量值中, 确定最具区分度的一组能量值, 并记录其对应的时频点; 最后, 对每一类辐射源信号的Hilbert谱提取上述记录的时频点对应的能量值, 将其送入卷积神经网络进行训练与测试, 并通过对抗训练的方式提升网络的抗噪性能。识别准确率实验表明, 对比不进行对抗训练的方法以及不进行预处理与对抗训练的方法, 所提算法的识别率分别平均提升3.1%与5.45%。识别鲁棒性实验表明, 所提算法训练样本为100时即可达到较好识别效果, 同时随着辐射源个数增多优势更加明显。复杂度分析表明, 所提算法能有效降低神经网络在大量训练与识别过程产生的运算量。  相似文献   

14.
针对现有高光谱图像分类模型在特征提取的过程中有效特征关注缺乏的问题,提出了一种基于三维卷积注意力与混合卷积的高光谱图像分类方法。该方法使用三维卷积和二维卷积串联完成对高光谱图像空谱特征的提取,并在三维卷积阶段引入注意力机制,使得模型在提取底层空谱特征的同时实现对有效特征的关注和激活。相对于传统三维卷积模型,提出的分类模型减小了运算复杂度,提升了模型噪声抑制能力,提高了分类效果。针对该方法的消融实验证明了提出的三维卷积注意力机制的有效性,在印第安松树林和帕维亚大学两个公开数据集上与其他5种分类模型的对比实验中取得了最优的分类精度。  相似文献   

15.
不同于常规目标,伪装目标特征模糊、尺度信息复杂多变、检测和分割难度更高.在现有伪装数据集基础上,提出了一种结合迁移学习和有效通道注意力的UNet网络伪装图像分割方法.首先,针对伪装目标特征模糊难以有效提取的问题,在UNet的下采样和上采样过程中,引入一种有效通道注意力机制,在不增加网络参数的同时,提高有效区域的特征权重...  相似文献   

16.
在构建智慧控制,万物互联的背景下,通过手势远程控制设备,进行人机交互逐渐成为研究热点。对此,提出了一种以毫米波雷达为传感器,采用基于纯自注意力机制模型实现手势识别的方法。首先,采集正面视角的13类手势的时序回波数据。接着,对数据进行三维快速傅里叶变换(three-dimension fast Fourier transform, 3D-FFT)、动目标显示(moving target indication, MTI)、恒虚警率(constant false alarm rate, CFAR)检测操作并进行固定种类特征提取,将这些特征传入基于纯自注意力机制网络的雷达特征变换(radar feature transformer, RFT)网络。最后,基于实测数据完成了数据特征提取、网络训练、手势识别等步骤。实验结果表明,所提方法在测试集上准确率达到95.38%,网络训练时间短,模型复杂度低,泛化性好,为现有研究提供了新的研究思路。  相似文献   

17.
提出了一种带有增强和变换因子的三层结构的双向联想记忆神经网络。介绍了增强和变换因子的巧妙选取方法,此方法可使网络很好地适用于相关度很高的样本。但是网络容量的增加往往伴随着寄生稳态点的增加,为避免这种情况,在网络中引入三层结构,这种新的双向联想记忆神经网络能够确保任意相关的样本达到完美的双向联想记忆。仿真实验证明了该方法的优越性。  相似文献   

18.
传统的网络安全态势预测方法依赖于历史态势值的准确性,并且各种网络安全因素之间存在相关性和重要程度差异性.针对以上问题,提出一种基于注意力机制的循环门控单元(recurrent gate unit,GRU)编码预测方法,该方法利用GRU神经网络挖掘网络安全态势数据之间的时间相关性;引入注意力机制计算安全指标的分配权重并将...  相似文献   

19.
为解决雷达目标高分辨距离像的识别问题 ,将 4种基于不同准则推导出的线性特征空间变换进行了归纳。分别用这几种变换方法对 6类飞机缩比目标高分辨距离像数据进行特征空间变换 ,然后用同一分类器判决 ,并对其识别结果加以分析与比较 ,得出在该应用条件下的有益结论。  相似文献   

20.
针对显著性目标检测区域边界模糊以及检测区域不精确不完整的问题,提出了基于交叉细化和循环注意力的RGB-D显著性目标检测方法。在利用编码器提取特征的阶段设计了交叉细化模块,用于补充对方的特征信息,改善了融合前的特征质量,抑制了质量较差的深度图带来的消极影响,解决了显著性目标边缘模糊的问题。针对融合后的特征,提出联合注意力机制与卷积长短期记忆网络单元的循环模块以模拟大脑的内部生成机制,通过检索过往的记忆帮助推断当前的决策,从而获得需要长期记忆的语义场景,可以全面学习融合特征的内部语义关系,生成检测区域更完整,更准确的显著性图。在6个公开数据集上进行的实验表明,所提的方法可以得到边缘清晰且准确度更高的显著图。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号