共查询到20条相似文献,搜索用时 15 毫秒
1.
基于目标之间拓扑信息的数据关联方法 总被引:7,自引:0,他引:7
数据关联是多平台多源信息融合系统中的关键问题。当传感器平台高速移动时,其自身的定姿定位往往存在一定误差,此时多个传感器对同一目标形成的量测经过坐标转换到同一坐标系下后会存在很大偏差,通过目标位置、速度等信息进行关联难度较大。所以,尝试提取目标的另一特征—目标之间的拓扑信息,通过对目标之间的拓扑信息进行模糊匹配和搜索,找到最佳的关联拓扑组,为数据关联和配准提供进一步校准的先验信息。仿真实验表明该方法具有较高的关联精度和鲁棒性。 相似文献
2.
多光谱和合成孔径雷达图像的融合可以保留每个数据的优势, 有利于提高土地覆盖分类精度。然而, 当前的一些图像融合方法不能完全利用原始数据的光谱信息与纹理细节。为了克服上述问题, 提出一种基于空谱信息协同和Gram-Schmidt变换的融合方法。在所提方法中, Sentinel-2A图像和高分三号(GaoFen-3, GF-3)图像分别经过不同的预处理操作。由于灰度共生矩阵能有效提取图像的纹理信息, 因此将其应用于Sentinel-2A图像以提取结构特征, 并将空谱信息协同的多光谱图像与GF-3图像通过Gram-Schmidt变换进行融合。实验采用主成分分析法和传统的Gram-Schmidt变换作为比较方法。为了确定融合算法的有效性, 采用5项评价指标(包括平均梯度、空间频率、均值、标准差和相关系数)来衡量融合图像的质量。此外, 由于随机森林具有优秀的训练速度和出色的分类性能, 将其用于土地覆盖分类。随机森林的分类精度、Kappa系数和分类结果图作为融合方法的评价标准。实验结果表明, 与单独使用原始Sentinel-2A相比, 所提方法可以将整体精度提高多达5%, 具有提高遥感卫星图像土地覆盖分类精度的潜力。 相似文献
3.
针对目前合成孔径雷达(synthetic aperture radar,SAR)在对大尺度瞬时海岸线提取方面的图像解译过程中,仍然存在精度低与自动化水平差的问题,提出一种基于深度学习网络的瞬时海岸线自动提取算法.首先,将SAR图像进行Lee滤波增强来抑制相干斑.其次,通过升级残差网络为主干网络,分4级提取海水目标的特征... 相似文献
4.
基于场景语义的图像检索新方法 总被引:1,自引:0,他引:1
针对图像的场景语义检索问题,提出一种基于多示例学习(multi-instance learning, MIL)的新方法。首先,该方法将图像当作多示例包,再根据图像的颜色复杂度,设计了自适应JESG图像分割方法,对图像进行自动分割,并提取每个分割区域的颜色-纹理特征,当作包中的示例,将图像检索问题转化成多示例学习问题;然后,利用改进的推土机距离(earth mover distance, EMD)来度量不同多示例包(图像)之间的整体相似度,设计了一种新的惰性MIL算法,用于场景图像检索。基于COREL图像库的对比实验结果表明,设计的示例构造方法与MIL算法都是有效的,且检索精度优于其他同类方法。 相似文献
5.
船载导航雷达和电子海图(electronic navigational chart, ENC)是船舶重要的导航仪器,雷达图像和ENC图像的融合能够给出更加丰富的航行和避碰信息。为此,提出了一种基于深度学习理论的提取雷达图像中鲁棒特征的数据融合算法,实现了ENC和雷达图像较高层次的数据融合。首先,利用深度学习算法对雷达图像进行目标检测,识别船舶雷达的特征目标。其次,对检测到的特征区域执行图像处理,并确定用于ENC和船舶雷达图像配准的参考点。最后,根据参考点进行仿射变换,实现融合算法。利用连续时间段的狭窄水域中的真实船舶雷达图像数据对融合算法进行验证,结果显示船舶雷达图像和ENC的海岸线边缘信息匹配良好且满足实时性要求。该算法与简单的像素级图像融合算法相比鲁棒性更强,实现了ENC与雷达图像的特征级融合。 相似文献
6.
基于深度图像绘制(DIBR)的视图合成是3DTV中的关键技术。为了消除或减小合成视图中的空洞,常需要对深度图像进行平滑,但这往往会造成图像质量的下降,并造成“视图失真”。提出了一种新的基于DIBR的视图合成方法。该方法执行两次三维图像变换,第一次变换采用平滑后的深度图像,得到含有较小空洞的目标图像:第二次变换采用原始的深度图像,得到含有较大空洞的目标图像,然后以第二次变换得到的目标图像为基准将两幅目标图像融合,最后对得到的目标图像进行空洞填充。实验结果表明该方法合成的图像的质量令人满意,适用于3DTV中的视图合成。 相似文献
7.
提出了一种基于多阈值分割和无下采样Contourlet变换(nonsubsampled Contourlet transform, NSCT)的SAR与全色图像融合算法。首先对降斑SAR图像作多阈值分割,并定义了区域均值比量测算子将SAR图像进行区域划分;然后采用NSCT对降斑SAR图像和全色图像进行多尺度、多方向分解,分解后的低频部分根据区域均值比量测算子进行区域融合,高频部分则采用区域与窗口邻域相结合的融合策略;最后对融合系数进行重构得到融合图像。实验结果表明,该算法的融合图像既可保持全色图像的空间分辨率,又可有效获取SAR图像的目标信息,融合效果优于小波变换法以及基于像素的NSCT法。 相似文献
8.
9.
间歇采样转发干扰(interrupted sampling repeater jamming, ISRJ)利用合成孔径雷达的匹配滤波特性,在其图像中产生间隔分布的假目标,对目标检测等造成欺骗效果,故针对ISRJ的检测与抑制具有重大意义,而现阶段相关研究主要集中在信号域。对此,在图像域中开展ISRJ检测研究。首先将实测数据与仿真干扰相结合,基于不同实测场景与仿真参数构建ISRJ样本;其次针对假目标间隔分布的特点,选用深度学习检测领域具有代表性的“两阶段”与“单阶段”模型;再次,使用单一场景的ISRJ样本对模型进行训练,再利用训练好的模型对其他场景的样本进行测试;最终,得到ISRJ检测结果。基于MiniSAR数据的实验表明,对于不同类别、不同场景以及不同参数的ISRJ样本,所用深度学习模型能够达到95.75%的平均总体检测精度,具有很强的泛化能力。此外,对于尺寸大小为501像素×501像素的样本,上述模型的最少检测用时为0.035 s。 相似文献
10.
针对视觉辅助驾驶系统(vision-based driving assistance system,VDAS)对夜间等低能见度场景下的车辆前视深度感知需求,提出一种基于深度学习的单目红外图像深度估计方法.该方法采用端对端的多任务自监督学习框架,利用单目红外视频帧之间的立体几何约束构建损失函数,无须场景的真实深度信息.取... 相似文献
11.
为降低无人机硬件设备升级成本,研究利用深度学习技术进行航拍图像超分辨(super-resolution,SR).针对神经网络训练参数量大的特点,提出了一种稀疏卷积神经网络SR(SR based on sparse convolutional neural network,SRSCNN)重构方法,对神经网络连接权值进行选... 相似文献
12.
13.
跟踪起始与数据关联是机动多目标单站无源跟踪的关键技术。提出了一种基于目标多特征信息融合的自适应跟踪起始算法,通过构造多维动态可变的跟踪门,进行自适应跟踪起始检测,然后根据序列概率比检验准则进行轨迹确认。同时提出了一种基于多目标多特征信息融合的数据关联算法,首先通过定义多个特征数据关联度,将单个有效观测的多特征信息进行融合,再对多目标进行综合数据关联。计算机仿真表明,该跟踪起始算法能够快速有效地进行航迹起始,数据关联算法的性能要优于传统的最近邻(NN)方法。 相似文献
14.
15.
针对传统雷达图像目标检测方法在海杂波及多种干扰物组成的复杂背景下目标分类识别率低、虚警率高的问题,提出将当前热点研究的深度学习方法引入到雷达图像目标检测。首先分析了目前先进的YOLOv3检测算法优点及应用到雷达图像领域的局限,并构建了海杂波环境下有干扰物的舰船目标检测数据集,数据集包含了不同背景、分辨率、目标物位置关系等条件,能够较完备地满足实际任务需要。针对该数据集包含目标稀疏、目标尺寸小的特点,首先利用K means算法计算适合该数据集的锚点坐标;其次在YOLOv3的基础上提出改进多尺度特征融合预测算法,融合了多层特征信息并加入空间金字塔池化。通过大量对比实验,在该数据集上,所提方法相比原YOLOv3检测精度提高了6.07%。 相似文献
16.
提出了一种基于模糊逻辑的同步定位与地图创建(simultaneous localization and maping, SLAM)数据关联方法,该方法计算特征观测和特征估计的误差椭圆,对归一化新息和误差椭圆重叠比例进行模糊化处理,作为模糊系统输入变量,将数据关联结果作为模糊输出变量。通过融合这些特征信息建立模糊规则,进行模糊推理,最终获得数据关联结果。这种方法可以有效表达数据关联中存在的不确定性和模糊性,具有处理多个候选关联假设的能力,并且在实际观测与特征估计值距离较小时减少了误关联的发生,在实际观测与特征估计值距离较大时又避免了丢弃正确关联。仿真实验表明,新算法具有更好的抗干扰能力和鲁棒性,为SLAM的数据关联提供了一条新的途径。 相似文献
17.
在合成孔径雷达(synthetic aperture radar, SAR)图像应用领域, 对SAR图像中飞机目标的检测备受关注。针对现有检测算法模型运算复杂度高、检测性能较低的问题, 提出一种基于深度可分离卷积神经网络与注意力机制的SAR图像飞机检测算法。首先使用深度可分离卷积神经网络提取图像特征, 同时在网络中引入逆残差块, 以有效防止通道数压缩引起的特征信息丢失问题; 其次在网络中引入多尺度空洞卷积—空间注意力模块和全局上下文通道注意力模块, 通过重新分配显著区域和各特征图更有代表性的权值, 以更好地捕捉空间有效信息和通道间语义相关性, 提高模型特征表达能力; 最后在SAR飞机数据集(SAR aircraft dataset, SAD)上进行对比实验验证。实验结果表明, 所提算法具有更好的检测效果, 平均准确率达到86.3%, 检测速度达到22.4 fps/s。 相似文献
18.
19.
为了提高小波直方图的检索性能,提出基于多小波信息分布熵的图像检索算法。对检索图像进行多小波分解,并用滤波器对各个子图进行非线性滤波,计算多小波各子带的能量熵;对各子图的小波能量矩阵进行0/1量化,然后以各子带相同方向子图计算多小波分布熵;针对特征向量进行高斯归一化,利用欧氏距离计算不同图像间的纹理相似度。基于内容的图像检索试验表明,该方法的检索精度比快速小波直方图方法提高了9.7%。 相似文献