共查询到20条相似文献,搜索用时 15 毫秒
1.
为解决通信辐射源识别中传统的人工特征提取方法鲁棒性不足和深度学习方法需要大量带标签目标域数据的问题,提出一种基于深度残差适配网络的通信辐射源个体识别方法.应用深度学习技术实现从源域到目标域上的迁移识别,只需要将带标签的源域数据和无标签的目标域数据进行训练.原始通信辐射源信号经过预处理后输入网络训练,将源域和目标域的分布... 相似文献
2.
针对复杂体制雷达辐射源的识别问题, 提出了一种基于时频特征提取与多级跳线残差网络(multi-level jumper residual network, MLJ-RN)结合的识别方法。首先,计算辐射源信号的平滑伪Wigner-Ville时频分布生成时频图像以表达信号本质特征, 将图像进行预处理以保留信号细微特征差异。然后,设计多级跳线连接的残差单元, 在此基础上构造MLJ-RN, 对时频图像相邻卷积层的细微特征进行学习和识别, 并使用随机梯度下降法训练网络。最后,通过对网络进行参数优化, 强化对信号的深层特征提取能力。仿真结果表明, 信噪比为-5 dB时, 该方法对12类雷达辐射源信号的整体识别概率达到95.1%, 从而验证了该方法在低信噪比下识别雷达信号的有效性。 相似文献
3.
针对现有通信辐射源个体识别方法预处理过程复杂及特征提取较难的问题,提出了一种基于堆栈式长短期记忆(long short-term memory, LSTM)网络的辐射源个体识别算法。该算法直接使用IQ时间序列信号训练LSTM网络,即可实现对通信辐射源个体的高效识别,避免了复杂的信号预处理过程。为使LSTM网络能更好地适用于通信辐射源个体识别,利用3层LSTM网络提取辐射源深层特征,并通过实验优化了网络参数。然后对该算法的实际应用泛化性进行了实验探究,结果表明该算法在其他辐射源数据集上也取得了较好的效果。最后,通过实验对算法进行了验证,结果表明相比于传统算法,在样本数较多时,该算法的识别准确率可以达到98%,而且简单快速智能,便于工程化与实用化。 相似文献
4.
针对现有通信辐射源个体识别方法预处理过程复杂及特征提取较难的问题,提出了一种基于堆栈式长短期记忆(long short-term memory, LSTM)网络的辐射源个体识别算法。该算法直接使用IQ时间序列信号训练LSTM网络,即可实现对通信辐射源个体的高效识别,避免了复杂的信号预处理过程。为使LSTM网络能更好地适用于通信辐射源个体识别,利用3层LSTM网络提取辐射源深层特征,并通过实验优化了网络参数。然后对该算法的实际应用泛化性进行了实验探究,结果表明该算法在其他辐射源数据集上也取得了较好的效果。最后,通过实验对算法进行了验证,结果表明相比于传统算法,在样本数较多时,该算法的识别准确率可以达到98%,而且简单快速智能,便于工程化与实用化。 相似文献
5.
复杂电磁环境中, 针对低信噪比条件下现有神经网络识别算法对于通信电台识别准确率不高的问题, 提出一种结合双层注意力机制和残差网络的通信辐射源个体识别方法。首先, 以空间注意模块和通道注意模块构成注意力机制。其次, 在一维残差网络中嵌入双层注意力机制, 提高对关键特征的学习能力。最后, 在实际数据集上验证算法的有效性。实验证明, 相比于残差神经网络算法, 所提方法既能保持模型较好的稳定性又在数据集上有明显的提升效果。 相似文献
6.
针对目前雷达干扰识别方法存在人工特征提取难、强噪声环境下识别率不高的问题,提出了一种基于长短时记忆(long short-term memory, LSTM)网络和残差网络相结合的雷达有源干扰识别方法。输入有源压制干扰原始时域序列数据,搭建深度学习网络模型对不同干噪比下的干扰信号进行分类识别。仿真结果表明:在干噪比为0 dB的情况下,该方法对4类雷达有源干扰信号的识别准确率均高于98.3%,与单纯的残差网络和卷积神经网络(convolutional neural networks, CNN)等其他深度学习算法相比,具有更佳的网络性能,验证了该算法的有效性。 相似文献
7.
针对低信噪比(signal to noise ratio, SNR)低截获概率(low probability of intercept, LPI)雷达脉内波形识别准确率低的问题,提出一种基于时频分析、压缩激励(squeeze excitation, SE)和ResNeXt网络的雷达辐射源信号识别方法。首先通过Choi-Williams分布(Choi-Williams distribution, CWD)获得雷达时域信号的二维时频图像(time-frequency image, TFI);然后进行TFI预处理降低噪声干扰和频率维的位置分布差异,以适应深度学习网络输入;最后在ResNeXt基础上加入扩张卷积和SE结构提取TFI特征,实现雷达辐射源分类。实验结果表明,SNR低至-8 dB时,该方法对12类常见LPI雷达波形的整体识别准确率依然能达到98.08%。 相似文献
8.
基于离散动态贝叶斯网络的辐射源目标识别研究 总被引:5,自引:0,他引:5
提出基于离散动态贝叶斯网络模型,对若干可观测的目标特征参数进行综合推理.推导了离散动态贝叶斯网络的推理算法.建立了目标识别的离散动态贝叶斯网络模型.应用图形模式,使得计算量大大简化,降低了实用的复杂性.仿真结果表明,该方法能够将各种目标特征进行综合,使得各种特征及不同时刻的同一特征互相修正补充,克服了依靠单一特征进行目标识别的局限. 相似文献
9.
基于双谱分析的雷达辐射源个体特征提取 总被引:2,自引:0,他引:2
针对复杂电磁环境中雷达辐射源特征参数的分选和识别问题,提出将辐射源信号的双谱作为雷达辐射源个体特征,并进一步提出将Walsh变换作为双谱特征优化算法。利用双谱中包含的信号细微信息和双谱受高斯噪声和杂波影响较小等特性,提高雷达辐射源个体特征参数的有效性;针对信号双谱中包含了很多与个体特征无关的冗余信息,不利于机器进行识别处理的缺点,利用Walsh变换对信号的双谱特征进行优化,剔除其中无效、冗余的信息,将变换后的结果作为雷达辐射源个体特征信息。仿真实验结果验证了算法的可行性。 相似文献
10.
传统辐射源信号识别方法往往需要人工提取特征,不仅对专业知识要求较高,而且人为选择的特征不能够保证适用于大多数类型信号的识别,识别精度和识别速度也不能兼顾.针对上述问题,将语音处理领域常用的深度学习模型——卷积长短时深度神经网络(convolutional long short-term deep neural netw... 相似文献
11.
针对传统的辐射源个体识别方法在低信噪比环境下识别性能不佳的问题,提出了一种空中目标辐射源的个体识别方法,该方法利用经验模态分解和变分模态分解得到信号不同频率的模态分量,将各模态分量的多尺度排列熵作为特征,利用主成分分析对数据进行降维,并采用支持向量机分类器进行辐射源个体识别。仿真结果表明,该方法对相位噪声、频率漂移以及谐波失真等细微特征的识别性能明显优于传统方法,并具有良好的抗噪性。 相似文献
12.
基于信号包络的辐射源细微特征提取方法 总被引:11,自引:0,他引:11
雷达信号体制和调制样式的多样化,信号环境的复杂化,使得常规的识别方法很难适应实际需要,无法有效地对雷达辐射源信号进行分类识别。提出了一种结合小波变换技术的辐射源细微特征提取新方法。该方法克服了传统包络分析方法的缺点,提高了提取信号包络信息的精度。最后通过辐射源个体识别实例说明了这种方法提取的细微特征是有效的。 相似文献
13.
针对现有雷达辐射源个体识别存在的识别准确率低、难以区分同型号雷达、缺乏实采信号验证等问题,提出了一种基于变分模态分解(variational modal decomposition, VMD)和时频能多域特征联合的雷达辐射源个体识别方法。首先对雷达信号进行VMD,然后对得到的模态分量分别在时域、频域和时频域提取13种特征参数,最后结合k近邻分类器实现雷达个体识别。采用实际采集的船用导航雷达信号对所提方法和现有的其他两种方法进行了对比验证,实验结果表明所提方法在识别准确率、算法鲁棒性方面优于现有两种方法,具有一定的工程应用价值。 相似文献
14.
新型雷达辐射源识别专家系统的研究与实现 总被引:13,自引:3,他引:13
介绍了一种新型雷达辐射源识别专家系统 (RadarRadiating -SourceRecognizingExpertSystem ,RRRES)的研究和实现方法。RRRES是一种采用VC 作开发工具 ,利用数据库和ODBC实现知识库的数据库方式存取 ,采用多黑板和推理历史树实现任务之间数据共享和传递 ,基于数据驱动方式推理的多任务多知识库专家系统。它同时提供了交互式和连续式两种推理方法 ,使用户既可以进行交互式的推理 ,又可以对一批雷达辐射源连续进行推理并将结果写入输出数据库中供用户查询。同时 ,RRRES还可以以数据库接口和Client/Server模式方便地集成在其它应用程序中 相似文献
15.
特定辐射源识别的频域鲁棒ε-混合模型方法 总被引:1,自引:0,他引:1
特定辐射源识别(specific emitter identification,SEI)是电子战领域的热点问题,而利用辐射源中频波形分类是SEI的一种自然选择。针对多径环境下的SEI波形检验遇到的难题,采用鲁棒的假设检验方法进行已知辐射源信号的检验。该算法利用多径信号与直达波信号间的频域局部相关性,在频域建立ε混合模型,并且将局部频带内的多径干扰表示成与信号频谱幅度有关的噪声,得到一种鲁棒的频域相关-限幅检验器。通过仿真验证了该检验器性能,并说明了该方法通过频域选择获得性能改善的机理。 相似文献
16.
基于神经网络的辐射源识别系统设计 总被引:7,自引:1,他引:7
针对当前辐射源识别系统中存在的问题,提出了一种结合神经网络技术的辐射源识别新方法。该方法可以快速高效的识别各类辐射源,既有基于统计分析的辐射源识别系统的快速性,又有基于专家系统的辐射源识别系统的自适应性和准确性。实际仿真结果表明该方法是有效的,尤其对于参数不全、参数畸变的雷达辐射源,其识别率和识别置信度都有较大提高。在本文方法的基础上,设计出一种结构简单、快速有效的辐射源识别系统,具有一定的推广价值。 相似文献
17.
传统的辐射源识别通过比对、匹配辐射源信号与雷达数据库来识别,这种方法很难满足战时高效、快速和准确的识别要求.随着机器学习方法的提出,诸如支持向量机等算法在辐射源识别领域的运用,可以满足战时高效、快速的识别要求,但这种方法在低信噪比环境下,辐射源识别准确率低.针对上述问题,采用深度学习,引入注意力机制和特征融合方法,提出... 相似文献
18.
针对低信噪比时莱斯信道下特征提取准确性难以保证、识别准确率偏低等问题, 提出一种基于Choi-Williams分布(Choi-Williams distribution, CWD)和深度残差收缩网络(deep residual shrinkage network, DRSN)的通信辐射源信号调制方式识别方法。利用CWD将时域复信号转换为二维时频矩阵, 对深度残差网络添加软阈值化得到DRSN, 将时频矩阵样本用于对DRSN的训练, 最终构建不同信噪比下的调制方式识别网络。仿真实验表明, 基于RadioML2016.10a数据集, 利用部分先验信息的情况下, 该分类识别方法具有较高的识别准确率和噪声鲁棒性。在0 dB时, 对11类信号的总体识别准确率达到了89.95%;在2 dB以上时, 总体识别准确率均超过91%, 优于其他深度学习识别方法。 相似文献
19.
为有效解决特定辐射源的个体识别问题, 提出一种基于Hilbert-Huang变换与对抗训练相结合的方法。首先根据辐射源硬件差异, 建立辐射源信号的数学模型; 其次, 对信号进行Hilbert-Huang变换得到Hilbert谱; 然后, 在预处理过程中, 从信号所有的Hilbert谱时频点对应的能量值中, 确定最具区分度的一组能量值, 并记录其对应的时频点; 最后, 对每一类辐射源信号的Hilbert谱提取上述记录的时频点对应的能量值, 将其送入卷积神经网络进行训练与测试, 并通过对抗训练的方式提升网络的抗噪性能。识别准确率实验表明, 对比不进行对抗训练的方法以及不进行预处理与对抗训练的方法, 所提算法的识别率分别平均提升3.1%与5.45%。识别鲁棒性实验表明, 所提算法训练样本为100时即可达到较好识别效果, 同时随着辐射源个数增多优势更加明显。复杂度分析表明, 所提算法能有效降低神经网络在大量训练与识别过程产生的运算量。 相似文献
20.
针对小样本条件下通信信号识别准确率不高、网络训练困难的问题, 本文提出一种基于残差生成对抗网络的调制识别算法。首先, 设计一种以Leakyrelu作为隐藏层激活函数的新残差单元, 使得网络对输入为负值的数据也可以进行梯度计算; 然后, 将新残差单元组成的残差网络和卷积神经网络作为本文算法的基本网络结构, 使用卷积步幅为1的非对称小卷积核, 更好地提取信号的边缘特征信息; 最后, 用Dropout代替池化操作, 并选择Adam梯度优化算法以交替迭代方式完成网络训练。仿真实验结果表明, 小样本条件下, 残差生成对抗网络算法复杂度明显降低, 信噪比(signal to noise ratio, SNR)在0 dB以上时, 对10种调制信号的识别准确率可以达到91%, 验证了所提方法的有效性。 相似文献