首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
不同类型半刚性基层材料性能的试验与分析   总被引:2,自引:0,他引:2  
采用石灰粉煤灰稳定碎石、水泥稳定碎石及水泥粉煤灰稳定碎石进行干缩试验,对比研究3种半刚性材料的累积干缩量、失水率、累积失水率和干缩系数4个性能指标;对3种半刚性材料进行温缩试验,通过温缩系数对比,分析其温缩特性;通过抗压回弹模量试验和抗弯拉回弹模量试验,对比研究了其力学特性;对3种半刚性材料进行疲劳试验和冲刷试验,对比分析其耐久性。研究结果表明:3种半刚性材料干缩性能的优劣顺序为:石灰粉煤灰稳定碎石、水泥粉煤灰稳定碎石、水泥稳定碎石;温缩性能的优劣顺序为:水泥粉煤灰稳定碎石、石灰粉煤灰稳定碎石、水泥稳定碎石;抗冲刷性能的优劣顺序为:石灰粉煤灰碎石、水泥粉煤灰稳定碎石、水泥稳定碎石;水泥粉煤灰稳定碎石的抗疲劳性能优于水泥稳定碎石。  相似文献   

2.
为研究破碎砾石水泥稳定基层的收缩性能以提高其适用性,通过逐级填充法确定配合比,探讨其抗冲刷性能和收缩性能.研究结果表明:增加水泥剂量可有效提高抗冲刷性能,干缩主要发生在早期,且失水率和干缩系数均随时间的延长而增大.2种破碎砾石水泥稳定基层(悬浮密实型和骨架密实型)的性能存在差异.对悬浮密实型,粗细集料比越大,7 d无侧限抗压强度越大;级配越粗,抗冲刷性能越强.对骨架密实型,在细集料含量不变的情况下,提高16 mm以上粗集料的含量可增强7 d无侧限抗压强度和抗冲刷性能.悬浮密实型的失水率、干缩系数、干缩应变和温缩系数均大于骨架密实型,且干缩应变变化率要高于失水率变化率.悬浮密实型的收缩性能整体上弱于骨架密实型.  相似文献   

3.
为研究半刚性基层材料的组成与疲劳性能间的关系,对几种代表性半刚性基层材料进行疲劳试验研究。通过对骨架密实水泥稳定碎石、悬浮密实水泥稳定碎石、骨架密实水泥粉煤灰稳定碎石和悬浮密实水泥粉煤灰稳定碎石梁试件进行三分点加载疲劳试验,得到室内疲劳预估模型,并进一步分析了材料组成对疲劳性能的影响。研究结果表明:骨架密实结构水泥稳定碎石疲劳性能普遍优于悬浮密实结构水泥稳定碎石;水泥粉煤灰稳定碎石的疲劳性能优于水泥稳定碎石;增加结合料剂量使得材料疲劳敏感性增加,但实际承载能力提高;级配稍细的骨架密实结构半刚性基层材料疲劳性能较好。  相似文献   

4.
骨架密实型二灰稳定碎石基层路用性能   总被引:2,自引:0,他引:2  
采用无侧限抗压强度实验、干缩温缩实验、水稳定性实验以及抗冲涮实验 ,系统地研究了骨架密实型二灰稳定碎石的路用性能 ,同时与现行规范规定的级配作比较 ,结果表明 ,骨架密实型二灰稳定碎石具有优良的力学性质、干温缩性能、水稳定性以及抗冲刷性。通过试验路三年的验证 ,也说明了骨架密实型二灰稳定碎石比现行规范规定的级配具有良好的路用性质。  相似文献   

5.
二灰碎石基层材料的合理结合料质量分数   总被引:2,自引:0,他引:2  
在二灰碎石最优级配的基础上,根据集料不同密实状态下的空隙率变化结合料的体积分数,通过力学性能、干缩、温缩性能试验,研究结合料质量分数的变化对路用性能的影响,并运用灰色关联决策对不同结合料质量分数下二灰碎石路用性能进行了综合评定。结果表明:当石灰与粉煤灰的质量分数达到21.5%时,二灰碎石28d抗压强度、劈裂强度和抗压模量达到最大值;二灰碎石7d龄期的干缩应变随着结合料质量分数的减少而减小;二灰碎石7d龄期的总平均温缩系数(60℃~-30℃)和低温平均温缩系数(10℃~-30℃)随着结合料质量分数的减少而减小,而高温平均温缩系数(60℃~10℃)呈增大趋势;二灰结合料存在一个最佳体积分数,即当二灰结合料的体积分数等于集料的松散状态下空隙率时,其路用综合性能才能达到最优。  相似文献   

6.
目的研究水泥质量分数、级配类型和拌和方式对水泥稳定碎石材料温缩性能的影响.方法对传统应变片法进行了优化,拟合温度-应变关系式,求导得温度-补偿系数关系式,建立了采用微晶玻璃作为补偿材料的高精度温缩系数测量方法 .结果常规拌和条件下,抗裂级配(骨架-嵌挤密实型)水泥稳定碎石的温缩系数高于常规级配(骨架密实型);振动拌和条件下,抗裂级配水泥稳定碎石的温缩系数低于常规级配水稳碎石,降低幅度约为10%.常规级配条件下,振动拌和工艺对水泥稳定碎石的温缩系数影响较小,温缩系数平均值降低约3%;抗裂级配条件下,经振动拌和后的水泥稳定碎石的温缩系数显著低于常规拌和,降低幅度在60%以上.结论采用优化后的温缩系数测量方法能够有效降低试验误差,而且抗裂型级配水泥稳定碎石抗温缩性能的好坏与拌和工艺之间的关系非常密切,在实际工程中在使用抗裂型级配水泥稳定碎石材料的同时应采用振动拌和工艺,以保证基层材料的抗温缩性能.  相似文献   

7.
汪锋  扈慧敏 《工程与建设》2011,25(3):372-374
水泥稳定碎石基层材料的矿料级配影响其强度特性,该文通过车辙板成型试件的方法,通过室内试验研究试件密实度、成型方式、级配类型对水泥稳定碎石强度的影响规律.水泥稳定碎石的密实程度对水泥稳定碎石的强度有明显的影响,密实度高时,强度比较高;密实悬浮结构的抗压强度比骨架密实结构的试块抗压强度高;骨架密实结构的抗折强度高于密实悬浮...  相似文献   

8.
为了深入研究各种因素对二灰稳定碎石混合料收缩特性的影响,对不同级配、不同二灰含量和不同龄期的二灰稳定碎石材料进行了温缩系数和干缩系数的测试,结果表明,具有骨架密实结构的二灰稳定碎石材料拥有较好的抗收缩特性;当级配一定时,混合料的温缩、干缩系数随着二灰含量的增大而增大;当二灰含量一定时,混合料的温缩系数随龄期的增加而不断增大;方差分析结果表明,对于温缩系数,龄期和二灰含量均为显著影响因素,且后者的影响更为显著;对于干缩系数,级配类型和二灰含量为显著影响因素,且前者的影响更为显著。  相似文献   

9.
确定了用于铺面工程中的混合料石灰、粉煤灰、土、碎砖之间的最佳比例关系,并对其最佳含水质量分数、无侧限抗压强度、劈裂强度、抗压回弹模量、干缩系数、温缩系数等铺面性能指标进行了测定.测定结果表明:按一定比例关系组成的石灰、粉煤灰、土、碎砖混合料可用作地下水位较低或少雨地区部分铺面工程中的基层和底基层.施工期间,应在接近最佳含水质量分数时对石灰、粉煤灰、土、碎砖混合料进行压实,并应控制施工温度和压实厚度.  相似文献   

10.
为了获得胶石比对AAM稳定碎石的强度和收缩性能的影响,实现AAM稳定碎石在道路工程中的应用,以钛石膏∶矿渣∶赤泥质量比为4∶6∶1.5,6%硅酸钠为激发剂,制备了5∶95、10∶90、15∶85、20∶80、25∶75五种胶石比的AAM稳定碎石,测定了7 d和28 d的无侧限抗压强度、劈裂强度、软化系数和干缩系数,进行了最佳胶石比下AAM的SEM和XRD测试。结果表明:当胶石比在5∶95~25∶75的范围内时,材料的无侧限抗压强度和劈裂强度随胶石比的增大而增大;软化系数均随胶石比的增大呈先增加后减小的趋势,在胶石比为15∶85时出现峰值;在同一胶石比下,随着养护龄期的增加,AAM稳定碎石的失水率随之增加,干缩系数也随之增加,且在前期增加迅速,后期增长平缓甚至下降;在同一龄期下,随着胶石比的增加,AAM稳定碎石的干缩系数也随之增加,失水率随之下降;最佳胶石比为15∶85,该胶石比下AAM稳定碎石的无侧限抗压强度、劈裂强度、水稳定性、收缩性能综合较优;胶凝体系中水化产物主要为钙矾石和C-S-H,且水化产物随养护龄期增加而不断产生,促进材料的强度增长。  相似文献   

11.
为了评估高速公路底基层用电石灰粉煤灰稳定土在含水量和温度变化下的抗裂性能,开展了干缩试验和温缩试验研究。干缩试验结果表明:随着失水率的增加,二灰稳定土的干缩系数先增大后减小。当失水率达到3%~5%时,干缩系数达到最大值,而后急剧减小;当失水率达到6%后减幅趋于平缓。温缩试验结果表明,在40°C到30°C之间时,温缩系数快速增加,在30°C~5°C之间时,温缩系数有减小的趋势,在-5°C~10°C之间,温缩系数快速增加,并达到最值,而后又开始缓慢减小。引入干缩开裂系数和温缩开裂系数,分析了电石灰粉煤灰稳定土的抗裂性能,结果表明:建议使用的稳定土配方具有优良的抗裂性能,能作为底基层填料。  相似文献   

12.
本文对我国半刚性等级公路路面结构的早期病害特点以及骨架密实型水泥稳定碎石基层进行了分析.过高的基层强度和模量不利于半刚性路面结构的整体受力,而且会导致基层发生严重的干缩和温缩开裂.合理设计强度与模量,能更加充分的发挥不同结构层的潜能,使得路面结构的疲劳寿命得以延长.在实际的工程中,选取骨架密实型水泥稳定碎石基层能够防止病害发生,延长等级公路运营寿命.  相似文献   

13.
骨架密实型水泥粉煤灰碎石组成设计与路用性能   总被引:2,自引:0,他引:2  
以最大密实度为原则,采用逐级填充方法研究了粗集料级配、粗集料与水泥粉煤灰砂浆最佳比例(质量比);以强度试验为基础,考虑经济性,研究了水泥粉煤灰最佳比例以及水泥粉煤灰与细集料比例.在此基础上,形成了骨架密实型水泥粉煤灰碎石组成设计方法.研究结果表明:骨架密实型水泥粉煤灰碎石在后期强度、抗裂性能方面明显优于规范级配水泥稳定碎石;提出的骨架密实型水泥粉煤灰碎石组成设计方法效果良好,具有优良的路用性能.  相似文献   

14.
探讨了粉煤灰的烧失量对水泥复合粉煤灰浆体的力学和耐久性能的影响。当水泥粉煤灰质量比为0.2且所选用的粉煤灰烧失量为20%时,各项性能表现出最差的结果,分别是为7d抗压强度仅为2MPa,28d强度也仅为3.92MPa;最大干缩和膨胀应变为1052×10-6和708×10-6;各龄期内粉煤灰的水化程度也相当低。  相似文献   

15.
二灰钢渣碎石路面基层材的设计与使用性能   总被引:3,自引:0,他引:3  
通过实验室试验,研究了路面基层用石灰粉煤灰稳定钢渣碎石集料混合料的使用性能.试验结果及分析显示:二灰稳定钢渣碎石混合料无侧限抗压强度随钢渣质量分数增加而显著增加,掺钢渣可以减少二灰结合料的用量.钢渣碎石合成集料遇水累计膨胀率可以通过改变钢渣的掺量控制,必须在材料设计时予以考虑.钢渣可以提高二灰稳定材料间接抗拉强度与抗压回弹模量,集料中掺50%钢渣可以分别提高材料的抗拉强度与抗压回弹模量最高24%与21%,减小设计路面结构层厚度.钢渣可以减小二灰稳定材料总干缩系数,集料中掺50%钢渣可以减小材料的干缩系数最多27%,减缓路面基层由于失水导致的开裂.钢渣的存在对二灰稳定材料抗冲刷特性影响不大,材料设计时可以不必考虑.  相似文献   

16.
姚江龙  扈惠敏  韩风 《科学技术与工程》2023,23(27):11816-11827
为研究可再分散乳胶粉对水泥稳定碎石材料性能的影响,开展水泥胶砂试验及无侧限抗压强度、抗折强度、干缩、温缩路用性能试验,并通过XCT、SEM微观试验分析胶粉的作用机理。试验结果表明:胶粉应用于低剂量水泥基材料时,对强度和抗裂性具有显著的提升效果。考虑水泥稳定碎石的抗压强度、抗折强度及韧性,5%胶粉用量最优。5%胶粉水泥稳定碎石7 d无侧限抗压强度提高9.8%、抗折强度提高9.6%、弯曲韧性提升21.0%。掺入胶粉后,水泥稳定碎石的7 d、28 d干缩系数分别降低41.5%、34.0%,温缩系数降低17.1%,收缩性能得到显著改善。XCT图像分析显示,加入胶粉改变了水泥胶砂的孔隙特征,减少了大孔的数量,孔隙率和平均孔径是影响胶砂强度的主要因素。SEM结果显示胶粉可以增强水泥稳定碎石的界面粘结,优化其孔隙结构,并且与水泥水化产物联结形成弹性空间网络结构,是水泥稳定碎石韧性和收缩性能提升的主要原因。  相似文献   

17.
鉴于传统的水泥稳定碎石基层存在耐久性、均匀性差且易产生裂缝等问题,本文将振动搅拌技术应用于水泥稳定碎石,对其进行无侧限抗压强度、间接劈裂强度、动态抗压回弹模量、干缩、温缩和疲劳试验,并与传统搅拌水泥稳定碎石对比。结果表明:振动搅拌技术明显提高水泥稳定碎石的无侧限抗压强度、间接抗拉强度、动态抗压回弹模量,减小变异系数,缩短强度和变形的稳定时间,而且对低温时的温缩性能改善效果更加显著;该技术可提高水稳基层的早期强度,并节约0.5%的水泥用量,降低基层的成本;也可减小干缩应变、失水率、干缩和温缩系数,使干缩与温缩性能更好且更早趋于稳定;还可改善水稳基层的疲劳性能并延长其使用寿命。  相似文献   

18.
为了提高水泥稳定碎石的抗裂能力,选取广东省佛山地区花岗岩集料,通过大量室内试验进行了抗裂型水泥稳定碎石混合料的配合比设计和路用性能分析.首先,采用两级干捣试验根据骨架间隙率合理极小值获得了三档粗集料的最佳配比,并采用i法和CBR试验得到了CBR值最大的细集料密实级配.其次,采用7d无侧限抗压强度试验,确定了强度最大的粗细集料最佳配比,由此提出了骨架密实结构的抗裂型水泥稳定碎石混合料的设计级配及最佳水泥剂量.最后,通过路用性能检验,并与施工规范悬浮密实级配进行了对比,结果表明,设计级配的各项路用性能均明显优于规范级配.因此,所提出的骨架密实结构水泥稳定碎石混合料具有优良的抗裂性能,可应用于工程实际.  相似文献   

19.
水泥粉煤灰稳定碎石结合料与集料的比例   总被引:3,自引:0,他引:3  
水泥粉煤灰稳定碎石的组成结构和路用性能随结合料与集料的比例而变化.通过这种基层材料不同结合料含量时的最大干密度试验,得到了最大干密度与结合料含量的关系曲线图,此图的最大干密度峰值所对应的比例即为结合料与集料的最优比例,此时结合料恰好填满集料空隙形成密实-骨架结构.试验结果表明:该结构具有优良的路用性能;级配变化时结合料与集料最优比例范围为13:87~17:83.  相似文献   

20.
水泥粉煤灰稳定碎石配合比设计   总被引:5,自引:0,他引:5  
通过强度、干缩和冲刷试验,研究了水泥粉煤灰稳定碎石混合料的组成结构对混合料强度的影响,水泥质量分数与粉煤灰质量分数的最优比例,水泥质量分数及结合料总质量分数对混合料干缩和冲刷性能的影响。提出了混合料配合比设计方法:首先测试低质量分数水泥7d龄期抗压强度,以确定混合料的最优集料质量分数;接着以后期抗压强度增幅指标(180d/28d)确定水泥质量分数与粉煤灰质量分数的最优比例;最后从抗冲刷和抗干缩性能考虑,前两步选定的配合比水泥质量分数应控制在3%-5%之间,结合料总质量分数不应超过25%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号