首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
令R是含单位元的素环,则R到其自身的每个完全保交换性的满射Φ都具有形式Φ=LC°π,其中C∈Z(R)是可逆元,π是R的环同构。令R是含单位元的素对合环,其对合运算记为*,则R到其自身的每个完全保斜交换性的满射Φ都具有形式Φ=LC°π,其中C∈Z(R)是可逆对称元,π是R的*-环同构。如果映射是保单位元的,则上述结果中环为素的假设可以去掉,即一般环(对合环)上的满射是环同构(对合环同构)当且仅当它是保单位的且完全双边保交换性(斜交换性)的。上述结果应用到算子代数,获得C*-代数、von Neumann代数、Banach空间标准算子代数、Krein空间不定自伴标准算子代数以及对称标准算子代数上完全保交换性或斜交换性满射的具体刻画。对于标准算子代数的情形,映射为满射的条件可以减弱为值域包含所有的一秩幂等算子。  相似文献   

2.
设A 和B是两个(复)线性代数, φ为A到B内的线性映射, n≥2为自然数, 如果对任意的a1,a2,…,an∈A,有φ(a1a2… an)=φ(a1)…φ(an), 则称φ为A到B内的n-同态;此外,如果φ是双射,则称φ为n-同构.本文主要研究了含单位元的(*-)Banach代数上的n-同态的自动连续性, 并对 C*-代数上的* n-同构进行刻划.  相似文献   

3.
讨论了B(H)上保交换零积的可加映射,其中B(H)是由Hilbert空间H上的有界线性算子全体组成的Banach代数。首先给出了在有限维情形下,若Φ是保交换零积的可加满射,使得Φ(I)=I,并且对每个一秩幂等算子P∈Mn都有Φ(FΦ)FΦ(P),则Φ是一个自同构或反自同构。进一步给出了无限维情形下,若Φ是保交换零积可加满射,则Φ是非零数乘一个环同构或一个环反同构。  相似文献   

4.
文章介绍了完全t部图K(n-k,n-2,n,…,n)的色唯一性,设P(G,λ)是图G的色多项式,若对于任意与图G的色多项式相等(P(G,λ)=P(H,λ))的图H都与图G同构(G≌H),则称图G是色唯一图,通过比较t部图的t+1色类的划分数和三角形子图的个数证明,如果n>[(k+1)2/4]+1,并且k>2,则完全t部图K(n-k,n-2,n,…,n)是色唯一图。  相似文献   

5.
设P(G,λ)是图G的色多项式,如果任意与图G的色多项式相等(P(G,λ)=P(H,λ))的图H都与图G同构(G≌H),则称图G是色唯一图.这里,通过比较图的三角形子图和无弦四边形的个数,完全解决了一类完全三部图K(n-k,n-3,n)的色唯一性问题,证明了,若n≥k+2≥5,则完全三部图K(n-k,n-3,n)是色唯一图.  相似文献   

6.
目的设A和B是含单位元的*-代数,Φ:A→B是线性双射。揭示了满足Φ(AA*A)=Φ(A)Φ(A*)Φ(A)(A∈A)的映射Φ与Jordan同构的关系;同时也揭示了满足Φ(AA*A)=Φ(A)Φ(A)*Φ(A)(A∈A)的映射Φ与Jordan*-同构的关系。方法从Jordan同构和Jordan*-同构的定义入手,运用Φ的线性性和满性进行了证明。结果如果对任意的A∈A有Φ(AA*A)=Φ(A)Φ(A*)Φ(A),则Φ是一个可逆元乘一个Jordan同构;如果对任意的A∈A有Φ(AA*A)=Φ(A)Φ(A)*Φ(A),则Φ是一个酉元乘一个Jordan*-同构。结论为进一步研究Jordan同构提供了新的思路。  相似文献   

7.
设Φ:А→А是一个线性映射,如果(A)A,B∈А且AB BA=I,有Φ(AB BA)=Φ(A)B AΦ(B) BΦ(A) Φ(B)A-AΦ(I)B-BΦ(I)A,则称Φ是А上的单位广义Jordan可导映射;如果(A)A,BА且AB BA=0,有Φ(AB BA)=Φ(A)B AΦ(B) BΦ(A) Φ(B)A-AΦ(J)B-BΦ(I)A,则称Φ是А上的零点广义Jordan可导映射.证明了Von Neumann代数上的每个范数拓扑连续的单位广义Jordan可导映射与零点广义Jordan可导映射都是广义内导子.  相似文献   

8.
设A和B分别是无限维的实或复Banach空间X和Y上的标准算子代数,F(X)是X上的所有有限秩算子组成的代数。设Φ:A→B是一个保单位的可加满射。文章在对Φ的值域range(Φ)附加条件比较弱的假设下证明了映射Φ单边保Jordan零积(AB+BA=0→Φ(A)Φ(B)+Φ(B)Φ(A)=0),则要么Φ|F(X)=0,要么Φ是下面四种形式之一:代数同构,共轭代数同构,代数反同构,以及共轭代数反同构。  相似文献   

9.
令H,K是C上无限维Hilbert空间,A,B分别是H和K上的因子von Neumann代数,证明了如果Φ:A→B是双边完全保交换的满射,则Φ是线性同构或共轭线性同构的非零常数倍。  相似文献   

10.
矩阵A的特征值的集合(含重数)记为σ(A),A的惯量是指三元有序数组i(A)=(i (A),i-(A),i0(A)),其中i (A),i-(A)和i0(A)分别表示具有正,负,零实部特征值的个数.n阶符号模式矩阵S=(sij)是指元素取自{1,-1,0}或者{ ,-,0}的矩阵,S的定性矩阵类是指集合Q(S)={A=(aij)∈Mn(R):对所有的i和j,sign(aij)=sij}.S的惯量是指集合i(S)={i(A):A∈Q(S)}.若对任意满足n1 n2 n3=n的非负三元数组(n1,n2,n3),都有(n1,n2,n3)∈i(S),则称符号模式S为惯量任意模式.考虑n阶符号模式Kn=(kij)n×n:当1≤j-i≤n-2或i=j=n时,kij=1;当1≤i-j≤n-2或i=j=1时,kij=-1;当|i-j|=n-1时,kij可以取任意固定值;其余情形时,kij=0.本文证明了Kn(n≥3)是惯量任意模式.  相似文献   

11.
设λ1,λ2,...,λn(可以相同)为实矩阵A的所有特征值,记为σ(A)=(λ1,λ2,...,λn).n阶符号模式矩阵S=(sij)是指元素取自{ ,-,0}的矩阵,S的定性矩阵类是指集合Q(S)={A=(aij)∈M\{n\}(R):对所有的i和j,sign(aij)=sij},记σ(S)={σ(A):A∈Q(S)}.设S为n阶符号模式矩阵,λ1,λ2,…,λn为n个任意复数,若λ1,λ2,…,λn中的虚数都与其共轭复数成对出现时,便存在A∈Q(S),使得σ(A)=(λ1,λ2,…,λn),则称S为谱任意模式.在本文中,我们得到两个谱任意模式.  相似文献   

12.
通过构造Gray映射Φ,研究了环R=F2+uF2+u2F2上的常循环码和循环码.给出了环R上码是常循环码的一个充分必要条件,证明了环R上长为n的码C是循环码当且仅当Φ(C)是域F2上指标为4长为4n的准循环码.特别的,环R上长为n的线性循环码的Gray像是F2上指标为4长为4n的线性准循环码.  相似文献   

13.
本讨论R上的保持某些距离值不变的映射,得到了R上(强)保α映射的表示定理,并证明了即使在R上(强)保无穷多个距离值的映射也未必是等距的.  相似文献   

14.
设M2是2×2复矩阵代数,Φ:M2→M2是近似保持数值域的线性满射,那么此映射是*自同构或*反自同构的小扰动.  相似文献   

15.
设C是复数域,fij(i,j∈[n]△{1,3,…,n})是从C到自身的映射,Hn(C)是C上n阶Hermite矩阵全体所成集合,f是Hn(C)上由{fij}n诱导的映射,在f(0)=0条件下给出了Hn(C)上保秩1的导出映射的形式。  相似文献   

16.
从有限von Neumann代数的任意含0,±I的子集到该代数的以±I为不动点的每个完全迹秩不增(完全保迹秩)映射都可以延拓为该子集生成的子环上的可加可乘(单)映射,即(单射)环同态。特别地,矩阵代数上的以±I为不动点的完全秩不增映射必是环同态。  相似文献   

17.
设H为复Hilbert空间,dim H≥3,C_p(H)与C~(s_p)(H)分别表示H上的Schattern-p类算子空间及自伴Schattern-p类算子空间.令1≤p≤+∞且P≠2,给出了C_p(H)或C~(s_p)(H)上保距满射的刻画.应用上述结果,得到C_p(H)上完全保距满射的分类.对C_2(H)上的保距映射的性质也进行了讨论.  相似文献   

18.
取定Cowen-Douglas算子T∈n(Ω), 给出了其对应的复解析丛ET的一类特殊截面, 进而引入Cowen-Douglas算子一类新的更易计算的酉不变量[Φ]. 在n≥2的情形, [Φ]是n×n的复光滑函数值矩阵Φ(T)的对合等价类, 特别地, 在B1(Ω)的情形, 其为实值函数. 在此基础上, 给出一类 Cowen-Douglas算子的分解惟一性. 证明了当一个Cowen-Douglas算子T满足D[Φ]>n2-2n+2时, T是Hilbert不可约的.  相似文献   

19.
本文详细推导证明了若把HIKKO闭弦场论中的“Φ*Ψ”理解成Witten开弦场论中的1/2[Φ*Ψ—(—1)~(‖Φ‖‖Ψ‖)Ψ*′Φ],则两种理论的所有代数形式相同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号