共查询到20条相似文献,搜索用时 15 毫秒
1.
Nekrasov矩阵是H-矩阵的一类重要子类,在物理学、经济学、生物学、电力控制理论、工程数学和数值计算等方面都有着重要应用.文章研究了Nekrasov矩阵逆矩阵的无穷大范数的上界估计问题.在不改变相应矩阵性质的前提下,通过引入可调节的参数,构造了严格对角占优的矩阵,并得到了该矩阵逆矩阵的无穷大范数的新上界另外,利用N... 相似文献
2.
于娟 《中国石油大学学报(自然科学版)》2007,31(5):148-150
对严格双对角占优矩阵M,给出了矩阵M^-1N的极大行和范数的新上界,该上界推广和改进了文献中的有关结果。数值算例说明了该结果的有效性。 相似文献
3.
蒋建新 《甘肃联合大学学报(自然科学版)》2013,27(2)
研究了严格对角占优M-矩阵的逆矩阵的无穷大范数上界的估计问题,利用矩阵的逆矩阵元素新的上界估计式给出了‖ A-1 ‖∞新的估计式,这些新的估计式改进了已有的结果. 相似文献
4.
《西南师范大学学报(自然科学版)》2017,42(12)
研究了Nekrasov矩阵A的逆的‖A~(-1)‖_∞上界估计问题,通过构造参数可调节的新估计式,提高了上界估计的灵活性和精确度.同时,给出了优于经典结果的参数的取值范围,并进行了证明.最后,用数值算例对本文估计式的优越性进行了分析验证. 相似文献
5.
【目的】Nekrasov矩阵是 H-矩阵的子类,同时它包含了严格对角占优矩阵。针对 Nekrasov矩阵的逆矩阵,给出它的无穷范数的上界估计。【方法】先对矩阵 A 进行分裂(A=D-L-U),然后构 造 严 格 对 角 占 优 矩 阵 C(C=E-(|D|-|L|)-1|U|),再通过利用 Nekrasov矩阵的定义、相关的引理,以及不等式的放缩等手段来估计A-1?的上界。【结果】得到了 A-1?上界的两个较好的结果。【结论】理论证明和数值算例都说明,一定情况下,得到的结果优于现有的结果。
相似文献
相似文献
6.
设A为严格双对角占优矩阵,给出了‖A-1‖∞的上界估计,特别地,当A为严格对角占优矩阵,改进了现有的相关结果. 相似文献
7.
8.
Nekrasov矩阵作为H-矩阵的一个重要子类,一直都是广大学者研究的热点矩阵之一.研究了Nekrasov矩阵的逆的无穷范数上界估计问题,首先,给出了其逆矩阵的无穷范数的新估计式.其次,证明了新估计式改进了相应文献的结果.最后,通过数值例子表明新估计式比已有估计式估计更具优越性. 相似文献
9.
李艳艳 《甘肃联合大学学报(自然科学版)》2014,(4):20-23
利用不可约对角占优矩阵A的逆矩阵A-1元素的上界估计式给出了‖A-1‖∞上界的新的估计式,这些估计式改进了现有的结果。 相似文献
10.
李艳艳 《贵州大学学报(自然科学版)》2019,36(2)
研究了最终严格对角占优矩阵A的逆矩阵A~(-1)无穷范数■的估计问题,利用Nekrasov矩阵逆矩阵无穷范数已有的带有参数的几个估计式,在矩阵A的定义的基础上,得到了■的带有参数的一些新结果。数值例子进一步说明了结果的可行性和优越性。 相似文献
11.
研究了弱链对角占优M矩阵A的逆矩阵A-1的元素,与‖A-1‖¥界的估计问题。利用迭代的方法,给出了A-1元素收敛的上,下界序列,同时也得到了‖A-1‖¥单调递减且收敛的上界序列。这些新的结果包含了关于该类问题已有的研究结果。 相似文献
12.
先给出了一类广义Nekrasov矩阵Schur补的一些特殊性质,并利用这些性质证明了所给出的这类广义Nekrasov矩阵的行列式的上下界估计式,推广了DWBailey和DECrabtree所给出的关于Nekrasov矩阵行列式上下界的结果. 相似文献
13.
蒋建新 《西南师范大学学报(自然科学版)》2018,43(4):6-10
在不改变矩阵性质的情况下,通过引入恰当的参数,首先构造了S-SDD矩阵,其次利用S-SDD矩阵与SNekrasov矩阵的逆矩阵无穷范数的关系,得到了S-Nekrasov矩阵的逆矩阵无穷范数的新上界.数值算例不仅说明了新上界的有效性和可行性,也说明了该结果改进了现有的结果. 相似文献
14.
设A为严格对角占优的M-矩阵,给出了‖A-1‖∞的一个新的上界估计式,进而给出了A的最小特征值q(A)下界的一个估计式,这些新的估计式改进了已有的结果。 相似文献
15.
目的研究Nekrasov-矩阵逆矩阵的无穷范数估计问题。方法利用矩阵分裂构造含参数的严格对角占优矩阵,并结合Nekrasov-矩阵的等价定义及不等式放缩技巧,估计Nekrasov-矩阵逆的无穷范数的上界。结果给出一个含有可调节参数μ的新上界。结论数值算例表明当选取适当的参数μ时,新的上界估计式优于现有的结果。 相似文献
16.
李艳艳 《西南师范大学学报(自然科学版)》2017,42(6)
研究Dashnic-Zusmanovich矩阵A的逆矩阵无穷范数和最小奇异值的估计问题.利用矩阵A的定义和不等式的放缩技巧,给出只涉及矩阵元素的估计式.对于该问题的研究填补了关于Dashnic-Zusmanovich矩阵研究在这方面的空白.数值算例说明了所给估计式的可行性和优越性. 相似文献
17.
18.
利用矩阵Schur补的定义,结合不等式的放缩技巧和数学归纳法,给出Nekrasov矩阵行列式界的估计,改进和推广了已有结果,并用相应的数值实例说明了所得结果的有效性. 相似文献
19.
一类迭代矩阵的谱半径的上界估计 总被引:1,自引:0,他引:1
对一类广义对角占优矩阵M,本文加强了对迭代矩阵M-1N的谱半径的上界估计的一些结果,并推广到相应的块形式.另外,我们还用块范数对M-1N的谱半径进行估计,并提出了实用的估计策略. 相似文献
20.