首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Microstructure, mechanical properties and wear resistance in an ultrafine-grained Al–Mg–Si alloy fabricated utilizing a combination of equal channel angular pressing (ECAP) and dynamic aging were investigated in this paper. The results indicated that the grain size of the ECAP alloy was significantly refined, i.e., to ~239 nm after three ECAP passes. Meanwhile, the yield and tensile strength of the ECAPed material reached 340 MPa and 445 MPa, respectively, while maintaining a significant uniform elongation of 14%. Wear resistance results demonstrated that the wear rate, wear depth and width of the ECAPed material decreased in comparison with the solution-treated (SST) and peak-aged (T6) conditions under a load range of 5–25 N. The adhesive wear that occurs in the undeformed specimens at 10 N does not appear in the ECAPed specimen at the same load, indicating that the ECAPed specimen delay the appearance of more serious wear mechanisms under certain loads. The cooperative interaction of high density nano-scale β" precipitates and dislocations resulted in a combination of super-high strength and good work hardening ability which suppressed the extension of cracks between the friction layer and the plastic deformation zone. As a consequence, the combination of ECAP and dynamic aging brings a significant improvement for antifriction performance of the 6061 aluminum alloy.  相似文献   

2.
强化固溶态2024铝合金ECAP加工后的拉伸性能   总被引:2,自引:0,他引:2  
在室温下对经强化固溶处理的2024铝合金实施了等效应变为0.5的等通道转角挤压(ECAP),将强化固溶、形变、时效和晶界细化四者有机结合,制备出超高强铝合金,其硬度、屈服强度、伸长率分别高达约191HV,610MPa和13%.强度-结构关系的定量计算表明,ECAP变形过程中所引入的位错,其对强度提升的贡献高达整个强度提高值的62.2%.研究结果还表明,强化固溶→低温ECAP变形→低温人工时效是提升常规铝合金的强度、制取超高强铝合金的一条有效途径。  相似文献   

3.
采用等径角挤压(ECAP)技术对Cu-0.16Zr-0.04Si合金在室温和液氮低温下进行1道次变形,随后在450 ℃下时效4 h.通过扫描电子显微镜(SEM)和X射线能谱仪(EDS)等技术,研究时效对合金变形组织的影响,分析了合金力学性能和导电性能的变化.结果表明:合金在变形及时效后,晶界处出现不均匀分布的棒状或颗粒状析出相,基体中出现弥散分布的细小点状析出相;合金的抗拉强度和导电率在变形时效处理后得到同步提高;随着时效时间的延长,合金的断裂韧性逐渐变差.  相似文献   

4.
The biodegradation behavior of an ultrafne-grained(UFG) magnesium alloy ZE41A containing rare-earth(RE),obtained through multi-pass of equal channel angular pressing(EACP),was investigated by electrochemical measurements in Hank’s solution.The highest value of charge transfer resistance was obtained in the electrochemical impedance spectroscopy plots of the ECAPed samples with the largest pressing pass,while a movement of corrosion potential toward noble direction and a decrement of corrosion current density were observed in the potentiodynamic polarization curves of the ECAPed samples with further pressing passes.These results indicated that ECAP could be an effcient way to reduce the biodegradation rate of the ZE41A alloy.  相似文献   

5.
A dispersion-strengthened copper alloy with 1 wt% TiC for commercial electrical-contact wires was prepared by in-situ reaction casting, grain-ultrafining by equal-channel angular pressing (ECAP) and subsequent annealing with aim to obtain excellent comprehensive performance. The results showed that fine TiC particles were in-situ synthesized in the as-cast Cu matrix and aggregated in clusters, and thus mechanical properties of the as-cast alloy deemed insufficient. Continued ECAP at 473 K significantly refined the grains of the as-cast alloy and improved the distribution of TiC particles. Due to multiple strengthening mechanisms, the ECAP-processed alloys maintained good conductivity with obviously enhanced tensile strength and hardness values. After post-ECAP annealing, the elongation and conductivity of the fine-grained copper alloy increased with the adequate tensile strength. The novel combined process endows the alloy appropriate performance to serve current high-frequency electrification railway systems.  相似文献   

6.
纲伙Ag-Cu合金分别通过机械合金化(MA)和剧烈塑性形法(SPD)制备,纳米Ag-Cu合金随退火温度的变化特征,通过透射电镜和X射线衍射并结合电导率测试结果,对纳米合金的微观结构和导电性能进行了分析和讨论。  相似文献   

7.
ZE10 magnesium alloy was subjected to equal-channel angular pressing (ECAP) up to 12 passes in a die with an angle of 120° between the two channels at 250-300℃. An inhomogeneous microstructure of bimodal grains including fine grains of 1-2 μm as well as coarse grains of about 20μm was obtained after the initial 1-4 ECAP passes. The grain size became increasingly homogeneous with further ECAP processing and the grains were significantly refined to 1-2 ktm after 8 passes and further refined to 0.5-1 μm after 12 passes. The alloy's yield strength changed slightly but the ductility improved greatly initially up to 4-6 passes corresponding to the bimodal grain microstructure. And after the subsequent pressing of more than 8 passes, the tensile strength including yield strength improved while the elongation decreased gradually.  相似文献   

8.
在室温下对经过时效处理的2024铝合金实施了等效应变为0.5的等通道转角挤压(ECAP)变形,将形变强化、时效强化和晶界细化强化有机结合,制备出超细亚晶粒铝合金,其硬度、屈服强度、伸长率分别约达100 HV,130 MPa和31%.分析探讨了超细亚晶粒2024铝合金的强化机理.研究结果表明,屈服强度的实测数值和理论计算...  相似文献   

9.
为了解不同道次等通道转角挤压(ECAP)对材料拉伸屈服和硬化的作用,以纯铜棒材试样为研究对象,实验研究了经多道次ECAP后材料的单轴拉伸屈服和硬化行为,并进一步探讨了退火对ECAP后材料力学性能的影响,得到以下结论:①挤压道次相同的情况下,经退火/空冷处理后材料硬化更为充分;②一道次挤压对材料的硬化作用远大于后续道次;③在材料挤压后实施了退火的情形,四道次后的挤压对材料不再有明显的硬化作用。这一研究有助于人们更深入地了解ECAP对材料力学行为的影响。  相似文献   

10.
Although excellent recyclability is one of the advantages of Al alloys, a recycling process can reduce different properties of these alloys by adding coarse AlFeSi particles into the alloys' microstructures. One of the well-known methods for modifying the microstructure of metallic materials is the imposition of severe plastic deformation (SPD). Nevertheless, the microstructure evolutions of recycled Al alloys containing extraordinary fractions of AlFeSi particles during SPD processing have seldom been considered. The aim of the present work is to study the microstructure evolution of a recycled Al-Fe-Si-Cu alloy during SPD processing. For this purpose, tubular specimens of the mentioned alloy were subjected to different numbers of passes of a recently developed SPD process called tube channel pressing (TCP); their microstructures were then studied using different techniques. The results show that coarse AlFeSi particles are fragmented into finer particles after processing by TCP. However, decomposition and dissolution of AlFeSi particles through TCP processing are negligible. In addition, TCP processing results in an increase in hardness of the alloy, which is attributed to the refinement of grains, to an increase of the dislocation density, and to the fragmentation of AlFeSi particles.  相似文献   

11.
Equal-channel angular pressing (ECAP) is a prominent technique that imposes severe plastic deformation into materials to enhance their mechanical properties. In this research, experimental and numerical approaches were utilized to investigate the mechanical properties, strain behavior, and damage prediction of ECAPed 7025 aluminum alloy in various conditions, such as die channel angle, outer corner angle, and friction coefficient. Experimental results indicate that, after the first pass, the yield strength, ultimate tensile strength, and hardness magnitude are improved by approximately 95%, 28%, and 48.5%, respectively, compared with the annealed state, mainly due to grain refinement during the deformation. Finite element analysis shows that the influence of die channel angle is more important than that of outer corner angle or friction coefficient on both the strain behavior and the damage prediction. Also, surface cracks are the main cause of damage during the ECAP process for every die channel angle except for 90°; however, the cracks initiated from the neighborhood of the central regions are the possible cause of damage in the ECAPed sample with the die channel angle of 90°.  相似文献   

12.
原位合成TiC/Ti复合材料的微结构和力学性能   总被引:4,自引:1,他引:3  
利用钛与碳之间的反应,经非自耗电弧溶炼工艺,简洁,低成本地制备了TiC增强的钛基复合材料,借助光学金相为微镜和透射电镜分析了复合材料的微结构,测定了原位合成钛基复合材料的力学性能和硬度值,结果表明,原位合成增强体TiC均匀地分布在基体钛合金中,增强体主要呈树枝晶状和等轴,近似等轴状,由于增强体TiC与基体合金的热膨胀系数存在较大的差异,在基体钛合金中形成同密度的位错,增强体与基体界面洁净,没有任何界面反应,复合材料的力学性能和硬度与基体钛合金比较有了明显的提高,铝元素的加入,不仅固溶强化了基体钛合金,同时使增强体更为细小,也有利于提高复合材料的性能。  相似文献   

13.
运用正交设计研究影响电沉积铁-镍-铬合金箔质量的主要工艺因素, 分析电流密度、溶液温度和溶液的pH值等各因素对合金成分和电流效率的影响, 通过综合评分的方法确定最佳工艺条件, 并对最佳工艺条件下获得的合金箔材的微观形貌、结构、物理和化学性能进行研究.研究结果表明: 制备的合金箔材成分为60%~65?, 34%~36%Ni, 1%~2%Cr, 厚度均匀, 表面光滑, 结晶细致. 扫描电镜观察和X衍射结果表明: 其晶粒尺寸在纳米范围内, 合金箔的抗拉强度和延展率分别为658 MPa和6%以上, 电阻率超过90 μΩ·cm, 磁感应强度为1.25 T, 最大导磁率为1.096×10-2 H·m-1, 矫顽力为357.53 A·m-1;箔材具有优异的耐腐蚀性能.  相似文献   

14.
7050铝合金时效动力学研究   总被引:2,自引:0,他引:2  
系统地研究了7050铝合金经固溶处理后,在人工时效过程中的动力学特征,结合透射电子显微镜,差热分析仪对时效规律及时效过程中的相变机制进行了初步探讨。  相似文献   

15.
机械活化Mo-Cu粉末的烧结   总被引:2,自引:1,他引:2  
研究了Mo-Cu粉末,经机械活化处理后的组织、形态与液相烧结性能、合金组织的关系,实验结果表明:一定时间活化处理,Mo-Cu粉末形成机械合金化初期的层状组织,其压坯可在较低温度液相烧结,合金相对密度大于99%,组织细小、均匀。  相似文献   

16.
In this study, cyclic expansion extrusion (CEE), as a relatively new severe plastic deformation (SPD) process, is applied to a rare earth (RE) containing Mg alloy WE43. The effects of the processing temperature and the number of passes are also investigated. The results showed that dynamic recrystallization (DRX) occurred after CEE processing at 400℃, and a bimodal structure with ultrafine DRXed grains surrounded the unrecrystallized grains. However, the DRX at 330℃ was retarded because of the existence of RE elements. The tensile tests showed that a simultaneous increase in the strength and the ductility of WE43 is obtained after CEE processing at 400℃ via two passes. Furthermore, the highest ultimate tensile strength of 440 MPa was achieved after the second pass of CEE at 330℃, and the highest ductility of 21% was attained after the second pass of CEE at 400℃. The microhardness measurements showed that the hardness increased from HV 80 to HV 114 and HV 98 after two passes of CEE processing at 330 and 400℃, respectively. In conclusion, increasing the processing passes could increase the mechanical properties and the volume fraction of the recrystallized grains. Moreover, increasing the temperature reduced the strength and the microhardness even if the elongation increased.  相似文献   

17.
Morphology and microstructure characterization of 95W-3.5Ni-1.5Fe powder prepared by mechanical alloying@Islam S.Humail$State Key Laboratory for Advanced Metals and Materials,Materials Science and Engineering School, University of Science and Technology B…  相似文献   

18.
This research aims to study the significance of Gd addition (0wt%-2wt%) on the microstructure and mechanical properties of Mg-9Al alloy. The effect of Gd addition on the microstructure was investigated via X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The Mg-9Al alloy contained two phases, α-Mg and β-Mg17Al12. Alloying with Gd led to the emergence of a new rectangular-shaped phase, Al2Gd. The grain size also decreased marginally upon Gd addition. The ultimate tensile strength and microhardness of Mg-9Al alloy increased by 23% and 19%, respectively, upon 1.5wt% Gd addition. We observed that, although Mg-9Al-2.0Gd alloy exhibited the smallest grain size (181 μm) and the highest dislocation density (5.1×1010 m-2) among the investigated compositions, the Mg-9Al-1.5Gd alloy displayed the best mechanical properties. This anomalous behavior was observed because the Al2Gd phase was uniformly distributed and present in abundance in Mg-9Al-1.5Gd alloy, whereas it was coarsened and asymmetrically conglomerated in Mg-9Al-2.0Gd.  相似文献   

19.
Fe60 Co20 C20超细合金粉末的结构和磁性能研究   总被引:1,自引:0,他引:1  
采用机械合金化方法制备出Fe60Co20C20超细合金粉末,对不同球磨时间的样品进行X射线衍射和磁滞回线的测量.X射线衍射分析结果表明:样品在球磨20 h后开始部分非晶化,在Fe-Co合金中加入C可促使其形成非晶;样品的晶粒尺寸随球磨时间的增加而减小,在一定的机械合金化条件下可获得Fe60Co20C20的非晶态超细合金粉末.VSM研究结果表明:球磨初期,样品的矫顽力增加;球磨20 h后,随着晶粒尺寸的降低矫顽力降低.机械球磨后晶粒尺寸是影响样品磁性能的主要因素.  相似文献   

20.
固溶后降温预析出对7A55铝合金力学及腐蚀性能的影响   总被引:1,自引:0,他引:1  
采用硬度测试、电导率测试及透射电镜研究固溶后降温预析出处理对7A55铝合金板材力学和腐蚀性能的影响。研究结果表明:随着预析出处理温度降低,基体析出相粗化且密度变小,导致合金时效后硬度和强度降低;晶界析出的平衡相由连续链状分布逐渐变为不连续分布,连续网状的腐蚀通道转变为断续的腐蚀点,7A55铝合金抗晶间腐蚀和剥落腐蚀性能提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号