首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
煤层巷道预排瓦斯带的流固耦合效应数值模拟   总被引:1,自引:0,他引:1  
针对在研究本煤层瓦斯涌出规律时,没有准确方法确定煤层巷道预排瓦斯带宽度的问题,基于瓦斯渗流和煤岩变形理论,建立含瓦斯煤岩体瓦斯渗流方程和煤岩巷道变形场方程,确立了煤层巷道预排瓦斯带流固耦合数学模型,以沁水煤田综掘煤层巷道作为实例进行数值模拟计算,研究得出含瓦斯煤岩巷道损伤的时空演化规律.提出基于示踪原理的实测煤层巷道预排瓦斯带宽度的方法,实测考察与数值计算结果具有一致性.研究提出的方法能够解决煤矿工作面瓦斯涌出量预测精度问题.  相似文献   

2.
考虑地温变化对煤矿深部开采岩石变形破坏的影响,利用COMSOL软件建立含瓦斯煤岩体热-流-固耦合数值模型,并对掘进面进行数值模拟,研究不同温度条件下瓦斯压力、瓦斯渗流速度、煤岩体位移的变化情况。结果表明:温度变化不大的情况下,掘进工作面的瓦斯浓度随温度变化不明显;煤壁工作面附近的瓦斯压力梯度增大。其他条件不变的情况下,随着温度升高,渗流速度不会发生明显变化。该研究为含瓦斯煤岩体动力灾害预测提供了参考。  相似文献   

3.
为研究采掘过程中低频振动对煤体渗流规律的影响机制,通过在三轴渗流试验中增加振动装置并结合细观试验,分析有效体积应力下煤岩渗透率及内部细观结构受振动扰动的演化规律.结果表明:振动作用能使煤岩的渗透率增大,其中当振动频率为10 Hz煤岩自身产生共振效应,且煤岩渗透率达到最大;但煤岩渗透率随着有效体积应力的增大而减小.利用孔隙率和灰度值来描述煤岩试件渗透率变化情况,即渗透率随着孔隙率的增加而增大,随着灰度均值的增大而减小.研究结论对低频振动诱发煤与瓦斯突出有了新的认识,有利于降低煤矿采掘安全事故的发生.  相似文献   

4.
 煤渗透率是研究瓦斯渗流特性及运移规律的关键参数, 而煤体结构各向异性导致渗透率具有明显的方向性。利用煤岩瓦斯渗流试验系统, 对不同变质程度煤样试件在面割理和端割理方向上, 进行不同瓦斯压力下的渗透率测试, 并根据等效驱替原理, 建立各向异性煤体渗透率的计算模型, 数值分析了煤体渗流的定向性特征。结果表明:在煤体面割理和端割理方向, 渗透率均随瓦斯压力增大成负指数减小;面割理方向的瓦斯渗透率与端割理方向相差可超过1 个量级, 且煤的变质程度越高, 差别越明显。随瓦斯压力增大, 煤的瓦斯渗流定向性系数峰值增大, 煤层瓦斯渗透定向性增强。在相同瓦斯压力下, 煤的变质程度越低, 煤层瓦斯渗透定向性越弱。  相似文献   

5.
为获取低阶煤煤体变形特征和渗透率变化规律,以焦坪矿区下石节煤矿3#煤原样为研究对象,利用煤岩体应力-渗流-温度多过程耦合试验系统开展了有效应力、基质收缩以及二者综合作用条件下的煤体变形和渗流实验.研究结果表明:在有效应力逐渐增加的过程中,煤体体积负应变逐渐增大,煤体收缩,渗透率逐渐减小;基质收缩过程中,随着孔压的逐渐下...  相似文献   

6.
以原煤为研究对象,利用"含瓦斯煤热流固耦合三轴伺服渗流实验装置",开展温度对采动作用下含瓦斯煤力学特性的影响研究.研究表明:1)在相同初始围压、气压和温度下,与恒定围压相比,卸围压煤样屈服段缩短,峰值应力和对应的轴向应变降低,横向应变速率增大,侧向膨胀系数和变形模量的演化进程加速;2)在相同初始围压和气压下,随温度升高,卸围压煤样强度降低,峰值应力处各应变均减小,侧向膨胀系数和变形模量均增大;3)高温环境下,煤岩发生失稳破坏和瓦斯突出的危险性变大,对采煤工作面巷道支护和瓦斯突出防治提出了更高的要求.  相似文献   

7.
针对含瓦斯煤渗透率在热力耦合作用下的演变规律,利用多物理场耦合控制方程建立相应的数值模型,对实验工况进行数值求解.将实验及数值模拟结果进行对比分析得出如下结论:1综合不同瓦斯压力情况下的轴压、围压对渗透率影响,模拟结果中渗透率普遍高于实验数据;2模拟计算得到的围压与渗透率之间呈指数关系,与实验结果的吻合度较高;3利用COMSOL Multiphysics数值模拟研究热力耦合情况下含瓦斯煤渗透率的影响规律,轴压处于高应力场下的模拟吻合度高于低应力场,采用单孔瓦斯渗流模型对高应力场的计算吻合度更好。  相似文献   

8.
运用自主研发的“含瓦斯煤热流固耦合三轴伺服渗流实验装置”,进行了恒定瓦斯压力和围压条件下,不同原始含水率含瓦斯煤样全应力应变瓦斯渗流试验,结合现场实测煤层注水前后瓦斯涌出量的变化规律。研究结果表明:随着煤样原始含水率的增加,煤样的三轴抗压强度减小,弹性模量减小,三轴抗压强度处轴向应变增大、横向应变和体积应变的绝对值增大;在全应力应变整个过程中,煤样的甲烷有效渗透率都减小。从煤的力学特性和瓦斯在煤层中流动两个方面分析了煤层注水的防突作用。煤层原始含水率越高,发生煤与瓦斯突出的危险性越小。可将煤层的原始含水率作为判断煤与瓦斯突出危险程度的一个重要指标。  相似文献   

9.
煤岩瓦斯抽放固结数学模型及应用   总被引:3,自引:3,他引:3  
基于煤岩弹性变形理论和瓦斯渗流理论,建立了煤岩瓦斯抽放的弹性固结数学模型,给出了模型的有限元离散方程,并开发了相应的数值计算程序.利用建立的模型和程序模拟了辽宁某瓦斯抽放井抽放过程,结果表明由于考虑了煤岩应力和变形对瓦斯渗流的影响,瓦斯压和应力分布更符合实际情况,这为煤层瓦斯抽放模拟提供了一个新的手段.但没有考虑煤岩破坏对瓦斯渗流的影响是模型的一个缺陷.  相似文献   

10.
高瓦斯矿煤样非Darcy流的MTS渗透性试验   总被引:2,自引:0,他引:2  
为了获得某高瓦斯矿煤岩非Darcy流渗透特性,从该矿采集煤样,制作成标准煤样.利用MTS815-02型岩石力学试验系统采用全程位移控制进行了全应力应变过程数控瞬态渗透法试验,计算出了在4MPa围压,15MPa/m孔压时,煤样在不同应变下非Darcy流渗透率、非Darcy流β因子、加速度系数及渗流稳定性指数,并给出了发生渗流失稳所需的压力梯度.研究表明:该煤样具有较强的脆性,在应变保持过程中表现出较大的松弛性能;在全应力应变过程中,该煤样的峰值应力前渗透率比较低,峰值应力后渗透率增大幅度很大;在应变增大过程中,煤样非Darcy流β因子几乎均为负值;煤样的渗流稳定性指数χ的负值只出现在峰值应力后.其渗流失稳灾害表现为瓦斯从煤岩体裂隙涌出甚至发生瓦斯喷出.图5,表1,参8.  相似文献   

11.
考虑瓦斯解吸影响的煤渗流应力耦合模型   总被引:2,自引:0,他引:2  
为了模拟瓦斯解吸引起的煤基质收缩对煤层瓦斯抽放的影响,采用数值计算方法建立了考虑瓦斯解吸影响的煤岩渗流应力耦合数学模型。并对Seidle模型不考虑有效应力对渗透率影响的缺陷提出了改进,开发了相应的数值计算程序,并对数值计算程序的可靠性做了验证。数值算例按考虑和不考虑瓦斯解吸影响两种工况分析了一个试井的瓦斯抽放过程,结果表明:瓦斯解吸诱发的煤基质收缩会较大提高煤岩的渗透率,在瓦斯抽放数值计算中应予以考虑;建立的改进Seidle模型能很好地模拟有效应力和瓦斯解吸对煤岩渗透率的影响。  相似文献   

12.
为了深入研究含瓦斯煤岩的蠕变本构模型,利用自主研发的RRTS-Ⅳ型岩石流变扰动效应试验机和含瓦斯煤岩流变扰动效应渗流试验装置进行含瓦斯煤岩三轴流变试验,得出含瓦斯煤岩的蠕变规律。基于有效应力原理和流动法则建立了含瓦斯煤岩三维蠕变本构方程,利用MATLAB对得出的蠕变方程进行拟合,拟合曲线与试验曲线吻合程度较高,验证了所建方程的合理性。通过建立的含瓦斯煤岩三维蠕变本构方程推断出含瓦斯煤岩存在极限变形量,结合试验过程可知,当含瓦斯煤岩的变形量达到该值时,应变速率会在短时间内急剧增大,导致煤岩发生破坏。  相似文献   

13.
煤岩灾变过程应力场-损伤场-渗流场耦合效应数值模拟   总被引:1,自引:0,他引:1  
为了揭示采动下煤岩灾变过程损伤-渗流诱发煤与瓦斯突出的灾变机制,基于含瓦斯煤岩破裂过程气固耦合理论,运用真实破裂过程分析RFPA2D系统中的GasFlow模块,模拟了采动过程中煤岩突出多场耦合效应与瓦斯卸压抽放渗流规律,研究了煤岩层中应力状态的变化及裂隙演化过程对透气性的影响.模拟结果表明:随着开采的进行,在扰动应力场和瓦斯压力的共同作用下,工作面与邻近高压瓦斯区之间的煤岩出现了裂纹萌生、扩展与最终贯通的演化过程;并且裂纹导通后,工作面与邻近高压瓦斯区之间煤岩的透气系数显著增大,其大小可能是贯通前的数倍.上述结果验证了采动下煤岩突出灾变过程的应力场-损伤场-瓦斯渗流场耦合效应,为采取合理的卸压消突或瓦斯抽放措施提供了一定的理论依据.  相似文献   

14.
为探究煤岩中CH_4的渗透规律,以试验研究为主要手段,结合敏感性分析,利用自主研发的试验系统,对煤、砂岩以及不同煤岩比的组合煤岩体试件,开展了考虑体积应力和孔隙压力影响的渗透规律试验研究.研究结果表明:当孔隙压力恒定时,随着体积应力的递增,无论是煤、砂岩还是组合煤岩,渗透率都会呈现出递减的趋势;通过进行敏感性分析发现试件的渗透率变化率和孔隙压力敏感系数均与煤岩比有关.在低体积应力条件下,试件煤含量越高,孔隙压力对渗透率影响越明显,并且对孔隙压力变化越敏感;煤岩比对组合煤岩中CH_4的渗透率有较大影响,对含煤量高的煤岩试件增加孔隙压力可有效提高CH_4渗透率.  相似文献   

15.
三轴应力作用下煤渗透率变化规律实验   总被引:15,自引:0,他引:15  
通过变化的围压扣孔隙压力的作用,进行含瓦斯煤三轴压缩的实验,系统地研究了含瓦斯煤在变形过程中渗透率的变化规律;并根据大量的实验数据,拟合得到含瓦斯煤的渗透率随围压和孔隙压力变化的经验方程.研究结果表明,该经验方程可应用于双层系统煤层变形与煤层气越流耦合模型的数值分析,使邻近层(采空区)孔隙压力分布或瓦斯抽放率的数值模拟更逼近实际观测结果.  相似文献   

16.
为研究不同煤岩组合体力学特性和声发射特征,利用RFPA2D数值模拟软件,对不同围压和不同组合倾角条件下的泥岩煤组合体,粉砂岩煤组合体及石灰岩煤组合体进行了模拟。结果表明,单轴压缩时不同煤岩组合体应力应变曲线相似,其峰值强度均接近煤体的单轴抗压强度;煤岩体强度随着组合体间倾角的增大而减小,煤岩体中岩体的强度越高,煤岩体越早出现强度的迅速衰减;煤岩组合体的内摩擦角随着组合体倾角的增大而减小,而内聚力随着倾角增大先增大后减小;随着围压的升高,煤岩组合体的声发射振铃计数最大值经历了一个先减后增的过程,组合体中岩石强度越高,声发射最大振铃计数值越高。  相似文献   

17.
交变电场对煤瓦斯渗流特性的影响实验   总被引:10,自引:0,他引:10  
对交变电场作用下煤瓦斯渗流特性进行了实验研究.结果表明,交变电场作用下煤的渗透率与体积应力的关系基本上符合负指数方程;交变电场作用使煤的渗透率增大,而且突出煤样的渗透率增大最多,延迟突出煤次之,非突出煤最少.  相似文献   

18.
(1)使用自主研发的含瓦斯煤热流固耦合三轴伺服渗流装置对平煤十矿及十二矿现场采取的原煤进行了进行了不同温度、不同有效应力和不同瓦斯压力条件下的渗流测试。当有效应力保持恒定,渗透率随着温度的升高逐渐降低;相同温度条件下,有效应力越大,渗透率越小;当瓦斯压力保持恒定时,渗透率随着温度的升高逐渐降低。(2)在含瓦斯煤热流固耦合问题中,提出了含瓦斯煤的应力场、渗流场及温度场耦合方程。(3)利用"多场耦合煤矿动灾害大型模拟试验系统"进行了0.1~0.4 MPa瓦斯压力下常规加载及3种不同开采方式大尺度煤岩的渗流实验研究,煤样的尺寸为长1 050 mm×宽410 mm×高410 mm。常规加载大尺度煤岩渗流试验看出随着时间的增加,煤样的应变随着应力的改变而改变,瓦斯流量与轴向应力、体积应变有较好的对应关系;当到达应力峰值后,随着轴向应力的降低,轴向应变与体积应变略微减小,流量增加,但增加幅度不大。(4)对现场取得的岩石样品进行卸围压试验,同时测定其渗透能力。根据CT扫描成果,卸围压达到的峰值强度后,大部分原煤试件内部形成单斜破坏的裂隙面,该裂隙面的剪切破坏使原煤样出现整体破坏。(5)在重庆大学国家重点实验室的旋转模型试验台上进行了基于平煤十矿戊9-10煤层与平煤十二矿己15-17200采煤工作面特点的相似模拟实验研究。(6)在平煤十矿北翼东区戊组设置瓦斯专巷,施工钻孔,利用CXK6-Z矿用本安型钻孔成像仪对钻孔中裂隙发育情况进行扫描,并统计裂隙场发育情况;采用UDEC软件进行数值模拟,对己15-17200采面覆岩裂隙场演化规律进行研究并分析其开采对戊9-10煤层的影响。结果表明,十二矿己15煤层覆岩裂隙带高度为100.0~109.5 m,综放工作面覆岩破坏范围的形态呈现出两边高中间低的类似马鞍形。(7)采用"远程顶板瓦斯抽采专用巷道下向钻孔法"、抽采垮落拱上方卸压区内瓦斯的"顶板走向钻孔法"与"本层机风巷瓦斯预抽"相结合的方法,使处于煤层采动影响卸压区范围内的瓦斯得到全面安全高效的抽采。通过优化设计可提高瓦斯抽采率17.52%。  相似文献   

19.
利用自行研制的“含瓦斯煤热流固耦合三轴伺服渗流系统”,进行固定瓦斯压力及不同围压和循环载荷情况下突出煤煤样变形渗透特性试验研究。结果表明:加载路径对煤样的力学特性影响显著,循环载荷试验和全应力应变曲线总体趋势相同,循环荷载作用下煤样的峰值应力比全应力应变的低;煤样在周期性循环荷载作用下的卸载应力应变曲线与加载应力应变曲线不相重合,形成封闭的滞回环。渗透率与煤样的损伤变形进程密切相关,在循环荷载下,渗透率在卸载过程中逐渐增大,加载过程中逐渐减小;卸载时渗透率应变曲线和加载时渗透率应变曲线会围成封闭环,与煤样的轴向应力应变封闭滞回环相对应,其所围面积随着围压和应力水平增加而减小。  相似文献   

20.
煤岩变形破坏过程中渗流演化规律试验研究   总被引:1,自引:1,他引:0  
高煤阶煤层气的开发主要采用压裂的方式进行增产。在压裂过程中,随着煤岩应力的不断变化,其孔隙结构和渗透特性发生变化,进而影响煤岩的力学破坏特征。以高阶煤为研究对象,开展不同围压作用下三轴渗流-应力耦合流变试验,研究煤岩变形和破坏过程中的应力、应变与渗透率之间的相互关系,分析了煤样应力、应变变化过程中渗透率随围压和体积应变的变化规律。试验结果表明:煤岩的应力-应变关系具有脆-塑性特征,煤岩体积应变经过压密和扩容阶段,环向应变能够比轴向应变更灵敏地反映出煤岩变形破坏的过程。煤岩渗透率在压缩过程中出现波浪状变化,在高应力作用下发生破裂后,其渗透率不一定比破裂前增加,相反有可能会减小。研究结果可为多场耦合下煤岩破裂模型的建立与分析、压裂施工参数设计和工艺的优化提供技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号