共查询到20条相似文献,搜索用时 15 毫秒
1.
为了求解非线性分数阶Fredholm积分微分方程的数值解,通过Legendre多项式,得出了Legendre小波,并由block pulse函数给出了Legendre小波的分数阶积分算子矩阵,利用block pulse函数与Legendre小波的积分算子矩阵的性质将非线性分数阶Fredholm积分微分方程转化为非线性代数方程组,进而可以求得原积分微分方程的数值解.结果表明:随着点数的增多,数值解的精度也越来越高.文中给出的算例表明了该方法的可行性和有效性. 相似文献
2.
Fredholm积分微分方程的数值算法一直是近些年来研究的重要课题.利用Haar小波研究了非线性分数阶Fredholm积分微分方程.Haar小波具有正交性,可计算性以及小支集性.结合block pulse函数给出了Haar小波的分数阶积分算子矩阵,并利用该函数的定义与Haar小波的积分算子矩阵的性质,将非线性分数阶Fredholm积分微分方程转换为非线性代数方程,从而便于计算机求解.最后给出算例表明该方法的有效性. 相似文献
3.
先利用Legendre小波的分数阶积分算子矩阵将非线性分数阶Volterra积分微分方程转化为非线性代数方程组, 再通过数值求解方程组得到原方程的数值解, 证明了误差边界值, 并用算例验证了该方法的有效性和精确性. 相似文献
4.
针对一类非线性分数阶微分方程,采用Legendre小波法对非线性分数阶微分方程进行研究.结合BlockPulse函数给出Legendre小波的分数阶积分算子矩阵,利用Block Pulse函数的定义与Legendre小波积分算子矩阵的性质将非线性分数阶微分方程转换为非线性代数方程组,进而对其数值解和误差分析进行研究.结果表明:随着点数增多,数值解的精确度增加.数值算例验证了小波法的可行性和有效性. 相似文献
5.
考虑一类时间-分数阶偏微分方程,将Haar小波与算子矩阵思想有效结合,对已知函数进行恰当的离散,将时间-分数阶偏微分方程转化为矩阵方程,使得计算更简便,并给出数值算例验证了方法的有效性. 相似文献
6.
利用定义在[0,1)上的连续Legendre多小波数值求解线性Fredholm积分一微分方程.剁用Legendre多小波逼近理论将积分一微分方程离散化为代数方程组.最后用数值算例与CAS小波理论以及Legendre小波理论比较,结果表明特别是当方程的解是线性函数时,Legendre多小波方法表现出更高的精度和有效性. 相似文献
7.
整数阶常微分方程的数值解法已有比较完善的理论,而时于分数阶微分方程数值方法的理论研究相对较少.由此考虑用Legendre小波逼近求线性分数阶微分方程数值解.首先描述了分数阶导敷、积分和I~enare小波的性质,然后利用这些性质把分数阶微分方程转化为Volterra积分方程.考虑采用Legendre小波求数值解的线性分数阶微分方程:Day(x)+λy(x)=f(x),0相似文献
8.
应用 Legendre 小波求解一类变系数分数阶微分方程组,利用 Legendre 小波积分算子矩阵将微分方程组转化成易于求解的代数方程组形式,进而对其进行求解。给出 Legendre 小波近似未知函数的收敛性分析,证明该方法的正确性,并给出三个数值算例进一步说明该方法是可行并有效的。 相似文献
9.
考虑求高阶Volterra积分微分方程的数值解.利用小波的正交性质及矩阵的稀疏性,给出了CAS小波的积分算子矩阵;利用小波算子矩阵将高阶积分微分方程化为线性代数方程组,简化了计算空间;最后,通过数值算例证明了该方法的有效性,并且得到更高精度的数值解. 相似文献
10.
为了求解变系数分数阶Fredholm微积分方程的数值解,运用Caputo分数阶导数及性质,得出了由Legendre多项式构造的任意分数阶微分算子Dα,再利用区间[0,1]上Legendre级数的逼近,将变系数的分数阶微积分方程用矩阵形式表示,采用配点法,得到相应的代数方程组,对原微积分方程的数值解进行了研究并给出了数值算例,验证了Legendre多项式方法的可行性和有效性。 相似文献
11.
针对求解分数阶微分方程数值解和所得结果误差大小问题.采用Haar小波分数阶积分算子矩阵方法,得到一类变系数分数阶微分方程数值解.利用所得算子矩阵将原分数阶微分方程转化为代数方程组,进而便于编程求解.讨论算法的误差分析,给出相应的误差估计式,并证明该算法是收敛的.结果表明:随着点数的增多,所得数值解与精确解的误差也越来越小.最后,数值算例验证了方法的有效性以及理论分析的正确性. 相似文献
12.
研究了求解非线性分数阶微分方程的hp型Legendre谱配置法。首先提出将多分数阶微分方程转化成等价的Volterra积分方程,其次构造了近似求解原方程的数值方法,最后通过数值实验说明了该算法的理论正确性以及所构造数值方法的有效性。 相似文献
13.
本文介绍了Legendre小波的性质,并利用它们将线性Fredholm积分-微分方程组转化为代数方程组求解, 得到方程组的系数矩阵相当稀疏, 给计算带来了方便. 最后, 为了说明方法的有效性, 我们给出了一些数值算例并与其它方法进行了比较. 相似文献
14.
文章应用Bernstein多项式求解一类变分数阶微分方程,结合Bernstein多项式的一阶微分算子矩阵、分数阶微分算子矩阵,通过离散变量,将原方程转化为线性方程组,通过解该线性方程组,进而得到数值解。数值算例验证了该方法的高度可行性和准确性。 相似文献
15.
利用有理Haar小波的分数阶积分算子矩阵,提出一种求解非线性分数阶Fredholm积分微分方程的数值算法,并通过数值实验验证了所提算法的精确性和有效性. 相似文献
16.
Adomian分解法求解非线性分数阶积分微分方程 总被引:1,自引:0,他引:1
求一类非线性分数阶Volterra积分微分方程数值解,给出了Adomian分解法.将Adomian多项式与分数阶积分定义有效结合,得到了Adomian级数解.收敛性分析证明了所得级数解收敛于精确解,并给出最大截断误差.结果表明:随着Adomian多项式个数的增加,数值解的精度也越来越高.数值算例表明了该方法的可行性和有效性.与已有的方法相比,Adomian分解法操作更有效、更方便. 相似文献
17.
18.
研究了分数阶非线性Fredholm积分微分方程,B样条小波分数阶积分算子矩阵将积分微分方程离散为代数方程组,数值算例验证了此方法的可行性和有效性. 相似文献
19.
小波方法求一类变系数分数阶微分方程数值解 总被引:1,自引:0,他引:1
为了解决分数阶微分方程数值解的问题,采用Haar小波算子矩阵的方法,研究了一类变系数分数阶微分方程的数值解.将Haar小波与算子矩阵思想有效结合,得到了Haar小波的分数阶微分算子矩阵,并对分数阶微分方程的变系数进行恰当的离散.把变系数分数阶微分方程转化为线性代数方程组,使得计算更简便,同时证明上述算法的收敛性.最后给出数值算例验证了该方法的可行性和有效性.数值计算结果表明:随着取点数的增多,数值解与精确解的近似度越来越高. 相似文献
20.
研究一类具有分数阶积分条件的分数阶微分方程边值问题,其非线性项包含Caputo型分数阶导数.将该问题转化为等价的积分方程,利用Leray-Schauder非线性抉择原理结合一个范数形式的新不等式,获得一定增长性条件下存在解的充分条件,推广和改进已有的结果,并给出应用实例. 相似文献