首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circumstellar accretion disks transfer matter from molecular clouds to young stars and to the sites of planet formation. The disks observed around pre-main-sequence stars have properties consistent with those expected for the pre-solar nebula from which our own Solar System formed 4.5 Gyr ago. But the 'debris' disks that encircle more than 15% of nearby main-sequence stars appear to have very small amounts of gas, based on observations of the tracer molecule carbon monoxide: these observations have yielded gas/dust ratios much less than 0.1, whereas the interstellar value is about 100 (ref. 9). Here we report observations of the lowest rotational transitions of molecular hydrogen (H2) that reveal large quantities of gas in the debris disks around the stars beta Pictoris, 49 Ceti and HD135344. The gas masses calculated from the data are several hundreds to a thousand times greater than those estimated from the CO observations, and yield gas/dust ratios of the same order as the interstellar value.  相似文献   

2.
Rapid planetesimal formation in turbulent circumstellar disks   总被引:1,自引:0,他引:1  
Johansen A  Oishi JS  Mac Low MM  Klahr H  Henning T  Youdin A 《Nature》2007,448(7157):1022-1025
During the initial stages of planet formation in circumstellar gas disks, dust grains collide and build up larger and larger bodies. How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem: boulders are expected to stick together poorly, and to spiral into the protostar in a few hundred orbits owing to a 'headwind' from the slower rotating gas. Gravitational collapse of the solid component has been suggested to overcome this barrier. But even low levels of turbulence will inhibit sedimentation of solids to a sufficiently dense midplane layer, and turbulence must be present to explain observed gas accretion in protostellar disks. Here we report that boulders can undergo efficient gravitational collapse in locally overdense regions in the midplane of the disk. The boulders concentrate initially in transient high pressure regions in the turbulent gas, and these concentrations are augmented a further order of magnitude by a streaming instability driven by the relative flow of gas and solids. We find that gravitationally bound clusters form with masses comparable to dwarf planets and containing a distribution of boulder sizes. Gravitational collapse happens much faster than radial drift, offering a possible path to planetesimal formation in accreting circumstellar disks.  相似文献   

3.
Krumholz MR  McKee CF  Klein RI 《Nature》2005,438(7066):332-334
There are two dominant models of how stars form. Under gravitational collapse, star-forming molecular clumps, of typically hundreds to thousands of solar masses (M(o)), fragment into gaseous cores that subsequently collapse to make individual stars or small multiple systems. In contrast, competitive accretion theory suggests that at birth all stars are much smaller than the typical stellar mass (approximately 0.5M(o)), and that final stellar masses are determined by the subsequent accretion of unbound gas from the clump. Competitive accretion models interpret brown dwarfs and free-floating planets as protostars ejected from star-forming clumps before they have accreted much mass; key predictions of this model are that such objects should lack disks, have high velocity dispersions, form more frequently in denser clumps, and that the mean stellar mass should vary within the Galaxy. Here we derive the rate of competitive accretion as a function of the star-forming environment, based partly on simulation, and determine in what types of environments competitive accretion can occur. We show that no observed star-forming region can undergo significant competitive accretion, and that the simulations that show competitive accretion do so because the assumed properties differ from those determined by observation. Our result shows that stars form by gravitational collapse, and explains why observations have failed to confirm predictions of the competitive accretion model.  相似文献   

4.
5.
硬盘的维护     
从硬盘的日常维护、软硬故障的处理等方面阐述了硬盘的维护方法。  相似文献   

6.
Bromm V  Loeb A 《Nature》2003,425(6960):812-814
The first stars in the Universe are predicted to have been much more massive than the Sun. Gravitational condensation, accompanied by cooling of the primordial gas via molecular hydrogen, yields a minimum fragmentation scale of a few hundred solar masses. Numerical simulations indicate that once a gas clump acquires this mass it undergoes a slow, quasi-hydrostatic contraction without further fragmentation; lower-mass stars cannot form. Here we show that as soon as the primordial gas--left over from the Big Bang--is enriched by elements ejected from supernovae to a carbon or oxygen abundance as small as approximately 0.01-0.1 per cent of that found in the Sun, cooling by singly ionized carbon or neutral oxygen can lead to the formation of low-mass stars by allowing cloud fragmentation to smaller clumps. This mechanism naturally accommodates the recent discovery of solar-mass stars with unusually low iron abundances (10(-5.3) solar) but with relatively high (10(-1.3) solar) carbon abundance. The critical abundances that we derive can be used to identify those metal-poor stars in our Galaxy with elemental patterns imprinted by the first supernovae. We also find that the minimum stellar mass at early epochs is partially regulated by the temperature of the cosmic microwave background.  相似文献   

7.
Reipurth B 《Nature》2001,409(6817):140-141
  相似文献   

8.
在广义相对论框架内 ,运用相对论形式的无碰撞Boltzmann方程和Schwarzshild度规 ,求得了中心为Schwarzshild黑洞的星的盘状分布 .计算结果表明盘状分布时的星数衰减比只有径向速度时的球状分布慢  相似文献   

9.
10.
The birth of very massive stars is not well understood, in contrast to the formation process of low-mass stars like our Sun. It is not even clear that massive stars can form as single entities; rather, they might form through the mergers of smaller ones born in tight groups. The recent claim of the discovery of a massive protostar in M17 (a nearby giant ionized region) forming through the same mechanism as low-mass stars has therefore generated considerable interest. Here we show that this protostar has an intermediate mass of only 2.5 to 8 solar masses (M(o), contrary to the earlier claim of 20M(o) (ref. 8). The surrounding circumstellar envelope contains only 0.09M(o) and a much more extended local molecular cloud has 4-9M(o).  相似文献   

11.
本文利用匹配多项式和伴随多项式的性质,证明了一类星图的并是匹配唯一的。  相似文献   

12.
Beltrán MT  Cesaroni R  Codella C  Testi L  Furuya RS  Olmi L 《Nature》2006,443(7110):427-429
Theory predicts and observations confirm that low-mass stars (like the Sun) in their early life grow by accreting gas from the surrounding material. But for stars approximately 10 times more massive than the Sun (approximately 10M(o)), the powerful stellar radiation is expected to inhibit accretion and thus limit the growth of their mass. Clearly, stars with masses >10M(o) exist, so there must be a way for them to form. The problem may be solved by non-spherical accretion, which allows some of the stellar photons to escape along the symmetry axis where the density is lower. The recent detection of rotating disks and toroids around very young massive stars has lent support to the idea that high-mass ( > 8M(o)) stars could form in this way. Here we report observations of an ammonia line towards a high-mass star forming region. We conclude that the gas is falling inwards towards a very young star of approximately 20M(o), in line with theoretical predictions of non-spherical accretion.  相似文献   

13.
Quasars are thought to be powered by supermassive black holes accreting surrounding gas. Central to this picture is a putative accretion disk which is believed to be the source of the majority of the radiative output. It is well known, however, that the most extensively studied disk model-an optically thick disk which is heated locally by the dissipation of gravitational binding energy-is apparently contradicted by observations in a few major respects. In particular, the model predicts a specific blue spectral shape asymptotically from the visible to the near-infrared, but this is not generally seen in the visible wavelength region where the disk spectrum is observable. A crucial difficulty has been that, towards the infrared, the disk spectrum starts to be hidden under strong, hot dust emission from much larger but hitherto unresolved scales, and thus has essentially been impossible to observe. Here we report observations of polarized light interior to the dust-emitting region that enable us to uncover this near-infrared disk spectrum in several quasars. The revealed spectra show that the near-infrared disk spectrum is indeed as blue as predicted. This indicates that, at least for the outer near-infrared-emitting radii, the standard picture of the locally heated disk is approximately correct.  相似文献   

14.
Dark and baryonic matter moved at different velocities in the early Universe, which strongly suppressed star formation in some regions. This was estimated to imprint a large-scale fluctuation signal of about two millikelvin in the 21-centimetre spectral line of atomic hydrogen associated with stars at a redshift of 20, although this estimate ignored the critical contribution of gas heating due to X-rays and major enhancements of the suppression. A large velocity difference reduces the abundance of haloes and requires the first stars to form in haloes of about a million solar masses, substantially greater than previously expected. Here we report a simulation of the distribution of the first stars at redshift 20 (cosmic age of around 180 million years), incorporating all these ingredients within a 400-megaparsec box. We find that the 21-centimetre hydrogen signature of these stars is an enhanced (ten millikelvin) fluctuation signal on the hundred-megaparsec scale, characterized by a flat power spectrum with prominent baryon acoustic oscillations. The required sensitivity to see this signal is achievable with an integration time of a thousand hours with an instrument like the Murchison Wide-field Array or the Low Frequency Array but designed to operate in the range of 50-100 megahertz.  相似文献   

15.
Our Solar System was formed from a cloud of gas and dust. Most of the dust mass is contained in amorphous silicates, yet crystalline silicates are abundant throughout the Solar System, reflecting the thermal and chemical alteration of solids during planet formation. (Even primitive bodies such as comets contain crystalline silicates.) Little is known about the evolution of the dust that forms Earth-like planets. Here we report spatially resolved detections and compositional analyses of these building blocks in the innermost two astronomical units of three proto-planetary disks. We find the dust in these regions to be highly crystallized, more so than any other dust observed in young stars until now. In addition, the outer region of one star has equal amounts of pyroxene and olivine, whereas the inner regions are dominated by olivine. The spectral shape of the inner-disk spectra shows surprising similarity with Solar System comets. Radial-mixing models naturally explain this resemblance as well as the gradient in chemical composition. Our observations imply that silicates crystallize before any terrestrial planets are formed, consistent with the composition of meteorites in the Solar System.  相似文献   

16.
正反中微子的吸收反应截面是影响初生中子星演化的重要参量.改进了在初生中子星高温环境中任意简并条件下的中微子和反中微子被重子吸收截面的计算方法,同时综合考虑了能量动量守恒、磁场效应和重子(中子或质子)的热运动效应,得到更精确的中微子和反中微子吸收反应截面.结果对进一步研究星风中的中微子加热率、中微子输运过程中的不透明度、合理解释中子星的相关观测现象有重要作用.  相似文献   

17.
Kwok S 《Nature》2004,430(7003):985-991
Recent isotopic analysis of meteorites and interplanetary dust has identified solid-state materials of pre-solar origin. We can now trace the origin of these inorganic grains to the circumstellar envelopes of evolved stars. Moreover, organic (aromatic and aliphatic) compounds have been detected in proto-planetary nebulae and planetary nebulae, which are the descendants of carbon stars. This implies that molecular synthesis is actively happening in the circumstellar environment on timescales as short as several hundred years. The detection of stellar grains in the Solar System suggests that they can survive their journey through the interstellar medium and that they are a major contributor of interstellar grains.  相似文献   

18.
19.
The features of the fragile eco-environment of the arid land decide that its capacity of disturbance-resistance is lower. The natural desert oases in the arid land are in mosaic patches distributed in a wide Gobi desert. The population distribution is greatly dependent on water resources. The population is characterized with dispersed distribution, simple production and living style, and poverty and remoteness. The reason why the ecological migrations are carried out lies in the ecological problems. "Ecological degradation" is the main driving force of the ecological migration. Then, the strength of the driving force depends on the degree of ecological degradation. Hence, whether to carry out ecological migration depends on the extent of ecological degradation. Theoretically, the critical value curve for calculating ecological migration in the arid land is put forward through comprehensive research of relative problems of ecology, economics etc., combined with the ecological migration experience in the arid land, and based on the features of the arid environment. In this article, with this curve, the theoretical research and some practice of the ecological migration have been done from the perspective of natural behavior and governmental behavior of the driving force formation of ecological migration. It analyses the active driving force (factors) and negative forces (factors), and points out the timing and steps of implementing the ecological migration in the arid land. The theoretical curve embodies certain originality and applicability, which provides a quantitative method for evaluating the degree of ecological degradation and the theoretical base for implementing ecological migration projects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号