首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control over physical systems at the quantum level is important in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio-frequency or microwave radiation: the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms' motion, but such changes are negligible at these frequencies for freely propagating fields. An exception is in the near field of microwave currents in structures smaller than the free-space wavelength, where stronger gradients can be generated. Here we first manipulate coherently (on timescales of 20 nanoseconds) the internal quantum states of ions held in a microfabricated trap. The controlling magnetic fields are generated by microwave currents in electrodes that are integrated into the trap structure. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation; the entangled state has a fidelity of 0.76(3), where the uncertainty denotes standard error of the mean. Our approach, which involves integrating the quantum control mechanism into the trapping device in a scalable manner, could be applied to quantum information processing, simulation and spectroscopy.  相似文献   

2.
The term 'molecular magnet' generally refers to a molecular entity containing several magnetic ions whose coupled spins generate a collective spin, S (ref. 1). Such complex multi-spin systems provide attractive targets for the study of quantum effects at the mesoscopic scale. In these molecules, the large energy barriers between collective spin states can be crossed by thermal activation or quantum tunnelling, depending on the temperature or an applied magnetic field. There is the hope that these mesoscopic spin states can be harnessed for the realization of quantum bits--'qubits', the basic building blocks of a quantum computer--based on molecular magnets. But strong decoherence must be overcome if the envisaged applications are to become practical. Here we report the observation and analysis of Rabi oscillations (quantum oscillations resulting from the coherent absorption and emission of photons driven by an electromagnetic wave) of a molecular magnet in a hybrid system, in which discrete and well-separated magnetic clusters are embedded in a self-organized non-magnetic environment. Each cluster contains 15 antiferromagnetically coupled S = 1/2 spins, leading to an S = 1/2 collective ground state. When this system is placed into a resonant cavity, the microwave field induces oscillatory transitions between the ground and excited collective spin states, indicative of long-lived quantum coherence. The present observation of quantum oscillations suggests that low-dimension self-organized qubit networks having coherence times of the order of 100 micros (at liquid helium temperatures) are a realistic prospect.  相似文献   

3.
Fink JM  Göppl M  Baur M  Bianchetti R  Leek PJ  Blais A  Wallraff A 《Nature》2008,454(7202):315-318
The field of cavity quantum electrodynamics (QED), traditionally studied in atomic systems, has gained new momentum by recent reports of quantum optical experiments with solid-state semiconducting and superconducting systems. In cavity QED, the observation of the vacuum Rabi mode splitting is used to investigate the nature of matter-light interaction at a quantum-mechanical level. However, this effect can, at least in principle, be explained classically as the normal mode splitting of two coupled linear oscillators. It has been suggested that an observation of the scaling of the resonant atom-photon coupling strength in the Jaynes-Cummings energy ladder with the square root of photon number n is sufficient to prove that the system is quantum mechanical in nature. Here we report a direct spectroscopic observation of this characteristic quantum nonlinearity. Measuring the photonic degree of freedom of the coupled system, our measurements provide unambiguous spectroscopic evidence for the quantum nature of the resonant atom-field interaction in cavity QED. We explore atom-photon superposition states involving up to two photons, using a spectroscopic pump and probe technique. The experiments have been performed in a circuit QED set-up, in which very strong coupling is realized by the large dipole coupling strength and the long coherence time of a superconducting qubit embedded in a high-quality on-chip microwave cavity. Circuit QED systems also provide a natural quantum interface between flying qubits (photons) and stationary qubits for applications in quantum information processing and communication.  相似文献   

4.
The self-assembly of semiconductor quantum dots has opened up new opportunities in photonics. Quantum dots are usually described as 'artificial atoms', because electron and hole confinement gives rise to discrete energy levels. This picture can be justified from the shell structure observed as a quantum dot is filled either with excitons (bound electron-hole pairs) or with electrons. The discrete energy levels have been most spectacularly exploited in single photon sources that use a single quantum dot as emitter. At low temperatures, the artificial atom picture is strengthened by the long coherence times of excitons in quantum dots, motivating the application of quantum dots in quantum optics and quantum information processing. In this context, excitons in quantum dots have already been manipulated coherently. We show here that quantum dots can also possess electronic states that go far beyond the artificial atom model. These states are a coherent hybridization of localized quantum dot states and extended continuum states: they have no analogue in atomic physics. The states are generated by the emission of a photon from a quantum dot. We show how a new version of the Anderson model that describes interactions between localized and extended states can account for the observed hybridization.  相似文献   

5.
Yamamoto T  Pashkin YA  Astafiev O  Nakamura Y  Tsai JS 《Nature》2003,425(6961):941-944
Following the demonstration of coherent control of the quantum state of a superconducting charge qubit, a variety of qubits based on Josephson junctions have been implemented. Although such solid-state devices are not currently as advanced as microscopic qubits based on nuclear magnetic resonance and ion trap technologies, the potential scalability of the former systems--together with progress in their coherence times and read-out schemes--makes them strong candidates for the building block of a quantum computer. Recently, coherent oscillations and microwave spectroscopy of capacitively coupled superconducting qubits have been reported; the next challenging step towards quantum computation is the realization of logic gates. Here we demonstrate conditional gate operation using a pair of coupled superconducting charge qubits. Using a pulse technique, we prepare different input states and show that their amplitude can be transformed by controlled-NOT (C-NOT) gate operation, although the phase evolution during the gate operation remains to be clarified.  相似文献   

6.
During the past decade, research into superconducting quantum bits (qubits) based on Josephson junctions has made rapid progress. Many foundational experiments have been performed, and superconducting qubits are now considered one of the most promising systems for quantum information processing. However, the experimentally reported coherence times are likely to be insufficient for future large-scale quantum computation. A natural solution to this problem is a dedicated engineered quantum memory based on atomic and molecular systems. The question of whether coherent quantum coupling is possible between such natural systems and a single macroscopic artificial atom has attracted considerable attention since the first demonstration of macroscopic quantum coherence in Josephson junction circuits. Here we report evidence of coherent strong coupling between a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble of electron spins in the form of nitrogen-vacancy colour centres in diamond. Furthermore, we have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3?×?10(7) such colour centres. This provides a foundation for future quantum memories and hybrid devices coupling microwave and optical systems.  相似文献   

7.
Roos CF  Chwalla M  Kim K  Riebe M  Blatt R 《Nature》2006,443(7109):316-319
Entanglement is recognized as a key resource for quantum computation and quantum cryptography. For quantum metrology, the use of entangled states has been discussed and demonstrated as a means of improving the signal-to-noise ratio. In addition, entangled states have been used in experiments for efficient quantum state detection and for the measurement of scattering lengths. In quantum information processing, manipulation of individual quantum bits allows for the tailored design of specific states that are insensitive to the detrimental influences of an environment. Such 'decoherence-free subspaces' (ref. 10) protect quantum information and yield significantly enhanced coherence times. Here we use a decoherence-free subspace with specifically designed entangled states to demonstrate precision spectroscopy of a pair of trapped Ca+ ions; we obtain the electric quadrupole moment, which is of use for frequency standard applications. We find that entangled states are not only useful for enhancing the signal-to-noise ratio in frequency measurements--a suitably designed pair of atoms also allows clock measurements in the presence of strong technical noise. Our technique makes explicit use of non-locality as an entanglement property and provides an approach for 'designed' quantum metrology.  相似文献   

8.
Quantum information science involves the storage, manipulation and communication of information encoded in quantum systems, where the phenomena of superposition and entanglement can provide enhancements over what is possible classically. Large-scale quantum information processors require stable and addressable quantum memories, usually in the form of fixed quantum bits (qubits), and a means of transferring and entangling the quantum information between memories that may be separated by macroscopic or even geographic distances. Atomic systems are excellent quantum memories, because appropriate internal electronic states can coherently store qubits over very long timescales. Photons, on the other hand, are the natural platform for the distribution of quantum information between remote qubits, given their ability to traverse large distances with little perturbation. Recently, there has been considerable progress in coupling small samples of atomic gases through photonic channels, including the entanglement between light and atoms and the observation of entanglement signatures between remotely located atomic ensembles. In contrast to atomic ensembles, single-atom quantum memories allow the implementation of conditional quantum gates through photonic channels, a key requirement for quantum computing. Along these lines, individual atoms have been coupled to photons in cavities, and trapped atoms have been linked to emitted photons in free space. Here we demonstrate the entanglement of two fixed single-atom quantum memories separated by one metre. Two remotely located trapped atomic ions each emit a single photon, and the interference and detection of these photons signals the entanglement of the atomic qubits. We characterize the entangled pair by directly measuring qubit correlations with near-perfect detection efficiency. Although this entanglement method is probabilistic, it is still in principle useful for subsequent quantum operations and scalable quantum information applications.  相似文献   

9.
Atom-molecule coherence in a Bose-Einstein condensate   总被引:2,自引:0,他引:2  
Donley EA  Claussen NR  Thompson ST  Wieman CE 《Nature》2002,417(6888):529-533
Recent advances in the precise control of ultracold atomic systems have led to the realisation of Bose Einstein condensates (BECs) and degenerate Fermi gases. An important challenge is to extend this level of control to more complicated molecular systems. One route for producing ultracold molecules is to form them from the atoms in a BEC. For example, a two-photon stimulated Raman transition in a (87)Rb BEC has been used to produce (87)Rb(2) molecules in a single rotational-vibrational state, and ultracold molecules have also been formed through photoassociation of a sodium BEC. Although the coherence properties of such systems have not hitherto been probed, the prospect of creating a superposition of atomic and molecular condensates has initiated much theoretical work. Here we make use of a time-varying magnetic field near a Feshbach resonance to produce coherent coupling between atoms and molecules in a (85)Rb BEC. A mixture of atomic and molecular states is created and probed by sudden changes in the magnetic field, which lead to oscillations in the number of atoms that remain in the condensate. The oscillation frequency, measured over a large range of magnetic fields, is in excellent agreement with the theoretical molecular binding energy, indicating that we have created a quantum superposition of atoms and diatomic molecules two chemically different species.  相似文献   

10.
Togan E  Chu Y  Imamoglu A  Lukin MD 《Nature》2011,478(7370):497-501
Control over quantum dynamics of open systems is one of the central challenges in quantum science and engineering. Coherent optical techniques, such as coherent population trapping involving dark resonances, are widely used to control quantum states of isolated atoms and ions. In conjunction with spontaneous emission, they allow for laser cooling of atomic motion, preparation and manipulation of atomic states, and rapid quantum optical measurements that are essential for applications in metrology. Here we show that these techniques can be applied to monitor and control individual atom-like impurities, and their local environment, in the solid state. Using all-optical manipulation of the electronic spin of an individual nitrogen-vacancy colour centre in diamond, we demonstrate optical cooling, real-time measurement and conditional preparation of its nuclear spin environment by post-selection. These methods offer potential applications ranging from all-optical nanomagnetometry to quantum feedback control of solid-state qubits, and may lead to new approaches for quantum information storage and processing.  相似文献   

11.
Fedorov A  Steffen L  Baur M  da Silva MP  Wallraff A 《Nature》2012,481(7380):170-172
The Toffoli gate is a three-quantum-bit (three-qubit) operation that inverts the state of a target qubit conditioned on the state of two control qubits. It makes universal reversible classical computation possible and, together with a Hadamard gate, forms a universal set of gates in quantum computation. It is also a key element in quantum error correction schemes. The Toffoli gate has been implemented in nuclear magnetic resonance, linear optics and ion trap systems. Experiments with superconducting qubits have also shown significant progress recently: two-qubit algorithms and two-qubit process tomography have been implemented, three-qubit entangled states have been prepared, first steps towards quantum teleportation have been taken and work on quantum computing architectures has been done. Implementation of the Toffoli gate with only single- and two-qubit gates requires six controlled-NOT gates and ten single-qubit operations, and has not been realized in any system owing to current limits on coherence. Here we implement a Toffoli gate with three superconducting transmon qubits coupled to a microwave resonator. By exploiting the third energy level of the transmon qubits, we have significantly reduced the number of elementary gates needed for the implementation of the Toffoli gate, relative to that required in theoretical proposals using only two-level systems. Using full process tomography and Monte Carlo process certification, we completely characterize the Toffoli gate acting on three independent qubits, measuring a fidelity of 68.5?±?0.5 per cent. A similar approach to realizing characteristic features of a Toffoli-class gate has been demonstrated with two qubits and a resonator and achieved a limited characterization considering only the phase fidelity. Our results reinforce the potential of macroscopic superconducting qubits for the implementation of complex quantum operations with the possibility of quantum error correction.  相似文献   

12.
利用3-Λ型五能级原子介质操控纠缠态   总被引:1,自引:0,他引:1  
通过分析3-Λ型五能级原子系统的暗态极化子,讨论三模量子场与原子介质的信息转换过程以及三个信号场之间的信息转换过程.研究结果表明,利用3-Λ型五能级原子系统,可以存储三模量子态,从理论上解释了三模量子信息在介质中的"写入"和"读出"过程.另外利用3-Λ型五能级原子系统还可以操控某些纠缠态,如实现纠缠态的生成、存储、读出、转换等.  相似文献   

13.
Electronic spins in semiconductors have been used extensively to explore the limits of external control over quantum mechanical phenomena. A long-standing goal of this research has been to identify or develop robust quantum systems that can be easily manipulated, for future use in advanced information and communication technologies. Recently, a point defect in diamond known as the nitrogen-vacancy centre has attracted a great deal of interest because it possesses an atomic-scale electronic spin state that can be used as an individually addressable, solid-state quantum bit (qubit), even at room temperature. These exceptional quantum properties have motivated efforts to identify similar defects in other semiconductors, as they may offer an expanded range of functionality not available to the diamond nitrogen-vacancy centre. Notably, several defects in silicon carbide (SiC) have been suggested as good candidates for exploration, owing to a combination of computational predictions and magnetic resonance data. Here we demonstrate that several defect spin states in the 4H polytype of SiC (4H-SiC) can be optically addressed and coherently controlled in the time domain at temperatures ranging from 20 to 300 kelvin. Using optical and microwave techniques similar to those used with diamond nitrogen-vacancy qubits, we study the spin-1 ground state of each of four inequivalent forms of the neutral carbon-silicon divacancy, as well as a pair of defect spin states of unidentified origin. These defects are optically active near telecommunication wavelengths, and are found in a host material for which there already exist industrial-scale crystal growth and advanced microfabrication techniques. In addition, they possess desirable spin coherence properties that are comparable to those of the diamond nitrogen-vacancy centre. This makes them promising candidates for various photonic, spintronic and quantum information applications that merge quantum degrees of freedom with classical electronic and optical technologies.  相似文献   

14.
Electromagnetically induced transparency (EIT) techniques are important tools for the storage of the quantum states of light fields in atomic ensembles and for enhancement of the interaction between photons. In this paper, we briefly summarize the recent experimental studies conducted by our group on enhanced cross-phase modulation based on double EIT effects, the quantum interference of stored dual-channel spin-wave excitations and the coherent manipulation of the spin wave vector for the polarization of photons in a single tripod atomic system. The work presented here has potential application in the developing field of quantum information processing.  相似文献   

15.
Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way-by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.  相似文献   

16.
Spin is a fundamental property of all elementary particles. Classically it can be viewed as a tiny magnetic moment, but a measurement of an electron spin along the direction of an external magnetic field can have only two outcomes: parallel or anti-parallel to the field. This discreteness reflects the quantum mechanical nature of spin. Ensembles of many spins have found diverse applications ranging from magnetic resonance imaging to magneto-electronic devices, while individual spins are considered as carriers for quantum information. Read-out of single spin states has been achieved using optical techniques, and is within reach of magnetic resonance force microscopy. However, electrical read-out of single spins has so far remained elusive. Here we demonstrate electrical single-shot measurement of the state of an individual electron spin in a semiconductor quantum dot. We use spin-to-charge conversion of a single electron confined in the dot, and detect the single-electron charge using a quantum point contact; the spin measurement visibility is approximately 65%. Furthermore, we observe very long single-spin energy relaxation times (up to approximately 0.85 ms at a magnetic field of 8 T), which are encouraging for the use of electron spins as carriers of quantum information.  相似文献   

17.
A subfemtotesla multichannel atomic magnetometer   总被引:9,自引:0,他引:9  
Kominis IK  Kornack TW  Allred JC  Romalis MV 《Nature》2003,422(6932):596-599
The magnetic field is one of the most fundamental and ubiquitous physical observables, carrying information about all electromagnetic phenomena. For the past 30 years, superconducting quantum interference devices (SQUIDs) operating at 4 K have been unchallenged as ultrahigh-sensitivity magnetic field detectors, with a sensitivity reaching down to 1 fT Hz(-1/2) (1 fT = 10(-15) T). They have enabled, for example, mapping of the magnetic fields produced by the brain, and localization of the underlying electrical activity (magnetoencephalography). Atomic magnetometers, based on detection of Larmor spin precession of optically pumped atoms, have approached similar levels of sensitivity using large measurement volumes, but have much lower sensitivity in the more compact designs required for magnetic imaging applications. Higher sensitivity and spatial resolution combined with non-cryogenic operation of atomic magnetometers would enable new applications, including the possibility of mapping non-invasively the cortical modules in the brain. Here we describe a new spin-exchange relaxation-free (SERF) atomic magnetometer, and demonstrate magnetic field sensitivity of 0.54 fT Hz(-1/2) with a measurement volume of only 0.3 cm3. Theoretical analysis shows that fundamental sensitivity limits of this device are below 0.01 fT Hz(-1/2). We also demonstrate simple multichannel operation of the magnetometer, and localization of magnetic field sources with a resolution of 2 mm.  相似文献   

18.
Röhlsberger R  Wille HC  Schlage K  Sahoo B 《Nature》2012,482(7384):199-203
The manipulation of light-matter interactions by quantum control of atomic levels has had a profound impact on optical sciences. Such manipulation has many applications, including nonlinear optics at the few-photon level, slow light, lasing without inversion and optical quantum information processing. The critical underlying technique is electromagnetically induced transparency, in which quantum interference between transitions in multilevel atoms renders an opaque medium transparent near an atomic resonance. With the advent of high-brilliance, accelerator-driven light sources such as storage rings or X-ray lasers, it has become attractive to extend the techniques of optical quantum control to the X-ray regime. Here we demonstrate electromagnetically induced transparency in the regime of hard X-rays, using the 14.4-kiloelectronvolt nuclear resonance of the M?ssbauer isotope iron-57 (a two-level system). We exploit cooperative emission from ensembles of the nuclei, which are embedded in a low-finesse cavity and excited by synchrotron radiation. The spatial modulation of the photonic density of states in a cavity mode leads to the coexistence of superradiant and subradiant states of nuclei, respectively located at an antinode and a node of the cavity field. This scheme causes the nuclei to behave as effective three-level systems, with two degenerate levels in the excited state (one of which can be considered metastable). The radiative coupling of the nuclear ensembles by the cavity field establishes the atomic coherence necessary for the cancellation of resonant absorption. Because this technique does not require atomic systems with a metastable level, electromagnetically induced transparency and its applications can be transferred to the regime of nuclear resonances, establishing the field of nuclear quantum optics.  相似文献   

19.
Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting systems with extremely strong intrinsic nonlinearities. Furthermore, exploiting higher-order nonlinearities with multiple pump fields yields a mechanism for multiparty mediation of the complex, coherent dynamics.  相似文献   

20.
Liu C  Dutton Z  Behroozi CH  Hau LV 《Nature》2001,409(6819):490-493
Electromagnetically induced transparency is a quantum interference effect that permits the propagation of light through an otherwise opaque atomic medium; a 'coupling' laser is used to create the interference necessary to allow the transmission of resonant pulses from a 'probe' laser. This technique has been used to slow and spatially compress light pulses by seven orders of magnitude, resulting in their complete localization and containment within an atomic cloud. Here we use electromagnetically induced transparency to bring laser pulses to a complete stop in a magnetically trapped, cold cloud of sodium atoms. Within the spatially localized pulse region, the atoms are in a superposition state determined by the amplitudes and phases of the coupling and probe laser fields. Upon sudden turn-off of the coupling laser, the compressed probe pulse is effectively stopped; coherent information initially contained in the laser fields is 'frozen' in the atomic medium for up to 1 ms. The coupling laser is turned back on at a later time and the probe pulse is regenerated: the stored coherence is read out and transferred back into the radiation field. We present a theoretical model that reveals that the system is self-adjusting to minimize dissipative loss during the 'read' and 'write' operations. We anticipate applications of this phenomenon for quantum information processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号