首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
针对河流溶解氧质量浓度序列的非线性和不稳定性导致的预测精度低的问题,提出二层分解技术和改进神经网络相融合的预测模型.首先,引入自适应噪声的完整集成经验模态分解对溶解氧时序数据进行分解,通过计算分解后各本征模函数(Intrinsic Mode Functions,IMF)的排列熵值以量化序列的复杂性,用变分模态分解对熵值较高的IMF进行二次分解,进一步削弱序列的非线性和不稳定性从而保证预测精度;其次,使用麻雀搜索算法优化神经网络的权值和阈值并对各分量进行预测;最后,将各分量预测结果重构后得到最终预测结果.实验结果表明,所提预测模型平均绝对误差为0.091,均方根误差为0.14,平均绝对百分比误差为0.96%,决定系数为0.948,优于其它预测模型.  相似文献   

2.
为提高非线性有源自回归(NRAX)神经网络模型的预测精准度,采用主成分分析(PCA)法和灰色关联分析(GRA)法提取原始数据特征并减少输入变量的维度,通过构建PCA-NARX和GRA-NARX模型预测地表水体未来短期(48 h)溶解氧(DO)的质量浓度.结果表明:GRA-NARX模型对时间序列DO质量浓度的预测效果优于...  相似文献   

3.
Elman神经网络是一种典型的回归神经网络,比BP神经网络具有更强的计算和适应时变特性的能力,因而非常适用于预测股市这一类极其复杂的非线性动力学系统。文章给出一种基于Elman神经网络的股票市场建模、预测及决策方法,对浦发银行股价在时间序列上作了连续若干天的短期预测,实验结果取得较高的预测精度、较为稳定的预测效果和较快的收敛速度。这表明该预测模型对于个股价格的短期预测是可行和有效的。  相似文献   

4.
应用Elman神经网络的混沌时间序列预测   总被引:5,自引:0,他引:5  
利用改进的 Elman神经网络对 3个典型的混沌时间序列在不同的噪声水平下进行预测 ,探讨了神经网络学习与泛化之间的关系 ,通过试凑法给出了 Elman最优的隐节点个数。并利用3种指标对预测结果进行了评估 ,结果显示 Elman网络对混沌时间序列预测的良好特性  相似文献   

5.
利用动态递归Elman神经网络的具有结构简单,运算量少,适合于动力系统辩识等特点,对Logistic混沌映射时间序列及气温时间序列进行了预测,并分析了预测误差。结果显示Elman神经网络对非线性时间序列具有良好的预测特性。  相似文献   

6.
风速预测在风能开发和利用中起着关键作用,然而风速序列往往存在强波动性和非平稳性的特征。为了提高风速预测的精度,文章提出变分模态分解(variational mode decomposition, VMD)和神经网络相结合的风速组合预测模型。首先采用变分模态分解将风速序列分解为若干不同频率的子序列;其次计算各子序列的样本熵(sample entropy, SE)以量化复杂程度,引入熵值法建立神经网络组合预测模型,对复杂度较高的分量采用神经网络组合预测模型,其余分量采用支持向量机(support vector machine, SVM)模型进行预测;最后将各分量预测结果运用BP神经网络拟合得到最终预测值。针对北京测风塔实测样本进行建模预测,验证所提出预测模型的可行性,并与6种不同风速预测组合模型开展对比分析,证明所提出的预测模型具有更好的鲁棒性和预测精度。  相似文献   

7.
传统PMV指标计算方法具有复杂度高、延时大的缺陷.根据PMV参数的时变特征,利用Elman神经网络建立PMV参数预测模型,实现对热舒适度的在线监测.模型以温度、相对湿度、风速和平均辐射温度为输入,以PMV指标为预测输出,具有良好的泛化能力.仿真结果表明该方法的预测结果与数值计算的结果相近,同时训练后神经网络的计算时间优于传统方法的计算时间.  相似文献   

8.
传统的警情时间序列预测以实际的发案数量为目标,且仅能实现短期的预测,但由于警情时间序列本身固有的强随机性使预测很难达到理想的效果。根据警情时间序列数据的特点,从公安工作的实际需求出发,提出了一种基于时间序列分解与全连接神经网络的(STL-FNN)预测模型,该模型以预测警情的单日发案的风险等级为主要目标,能够实现警情风险等级的长周期预测。利用该模型对B市侵财类警情数据进行了时间序列长周期预测的实证分析,结果表明:STL-FNN模型能够实现一年的警情单日发案风险的预测,平均准确率为0.624 7,预测性能优于Holt-Winters、LSTM、Prophet和ARIMA等模型。  相似文献   

9.
针对污水处理过程溶解氧浓度时变设定值难以控制的问题,提出一种溶解氧浓度的神经网络预测控制器设计方法.首先,在活性污泥法污水处理过程通用机理模型基础上,利用系统的输入、输出数据,采用递推学习更新模式,通过三层BP神经网络训练出系统神经网络逼近模型.然后,设计满足出水水质指标的溶解氧约束预测控制器.在考虑溶解氧测量白噪音干扰和进水流量发生阶跃变化情况下,将所设计的控制器用于污水处理溶解氧浓度的时变设定值跟踪控制.仿真结果表明:与传统PID控制器相比,神经网络预测控制器能够显著提高溶解氧跟踪控制性能,具有更好的自适应性和抗干扰能力.  相似文献   

10.
本文根据河流一维水质对流扩散方程和潮汐河流的特征,建立了潮汐河流潮变溶解氧数学模型.该模型考虑了有机污染物质的碳化和硝化耗氧过程,通过模拟实测的溶解氧,确定了由流速和水深表达的复氧系数公式中的有关参数.计算值与实测值的比较结果表明,本模型能较好地模拟黄浦江潮汐过程中溶解氧的时空变化过程,对进一步探讨潮汐河流的水质变化规律有一定的参考价值.  相似文献   

11.
布谷鸟搜索(CS)算法是一种新型的基于仿生学原理的元启发式算法,具有很好的全局优化能力,但其存在后期收敛速度慢、计算精度不高等不足。通过将交叉熵(CE)方法嵌入到CS中构建一种改进的CS算法,基准测试函数集的测试结果表明改进算法收敛速度和计算精度都有了明显提高。用改进的算法实现对人工神经网络的训练,实验结果显示新算法训练的神经网络收敛速度更快,能有效避开局部极小。最后用所建立的人工神经网络对中国人口总量进行了预测。  相似文献   

12.
为了对污水处理生物过程中曝气池内溶解氧进行准确的实时预测,分别应用自适应神经网络模糊推理系统(ANFIS)和BP神经网络建立了针对曝气池溶解氧的预测模型,并进行了对比研究。结果表明,用自适应神经模糊推理系对曝气池溶解氧的预测,在模拟误差和收敛性方面,均好于单纯的BP神经网络。  相似文献   

13.
为提高抽油机故障诊断效率, 提出了在布谷鸟搜索算法(CS: Cuckoo Search)中加入自适应步长, 并 用函数进行测试, 结果验证了改进算法的有效性。 用改进的 CS 算法优化 BP(Back Propagation)神经网络 的权值和阈值, 并与传统 BP 算法进行比较, 证明了改进的 CS 算法克服了传统算法训练速度慢、 易陷局 部极值的缺点。 将优化的神经网络应用于抽油机故障诊断中的实验表明, 该算法具有较快的收敛速度和 较好的稳定性, 同时也提高了抽油机故障诊断的精确性。  相似文献   

14.
针对灰色预测对波动较强的序列只能预测大致变化的缺陷,在分析河流水质动态变化的基础上,结合灰色理论中的GM(1,1),无偏GM(1,1)和RBF神经网络的特点,提出有机灰色神经网络预测模型,将灰色模型得到的数值作为神经网络的输入,原始数据作为神经网络的输出,训练得到最佳神经网络结构.以某地区河流水质为例,根据其变化规律,应用有机灰色神经网络模型进行预测,结果表明,该模型拟合误差小,预测精度高.  相似文献   

15.
BP网是神经网络时间序列预测方法中最常用的网络。针对BP算法局部搜索能力强,而遗传算法全局搜索优势突出的特点,将二者结合构造遗传BP神经网络,用于非平稳时间序列预测。仿真结果表明,该混合算法不仅提高了学习效率,而且对太阳黑子数预测的准确性高于BP算法、传统统计学预测方法。  相似文献   

16.
针对活塞环渗氮硬化工序建模困难的情况,通过主成分分析法(PCA)提取氮化工序特征参数,降低了质量模型输入样本维数,建立了基于小波Elman神经网络的活塞环制造关键工序质量预测模型,实现了工序过程质量波动趋势的预测,为后续的工艺优化和质量改进奠定基础。结果表明,该方法可以有效地改进渗氮硬化工序的质量控制,质量预测模型对输出质量特征值的预测准确率达到89%,具有比标准Elman网络更好的预测精度和收敛速度.  相似文献   

17.
基于简单遗传算法的神经网络训练速度慢、易陷入局部极值,用具有较好的全局搜索能力自适应遗传算法来优化神经网络权值和国值,设计了基于自适应遗传算法的BP神经网络的股票预测系统.该系统根据对股票历史数据分析,预测股价未来几天时间的走势.结果表明,改进算法具有很强的可行性和高效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号