首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 582 毫秒
1.
The signatures of flux ropes with obvious core magnetic field are detected by Cluster Ⅱ at the dayside magnetopause during 11:00--11:15 UT on Mar. 2, 2001. The similar characteristics can be found from the magnetic fiel dvariations recorded by the four spacecrafts (Cluster Ⅱ C1--C4). All the three (-/ ) bipolar signatures in the BN component are accompanied with enhancements of BM and magnetic field strength B in the boundary normal coordinates (LMN coordinates). A MHD simulation with two dimensions and three components is performed to explore the reconnection process driven by the incoming flow of solar wind at the dayside magnetopause. The numerical results can illustrate the recurrent formation of magnetic structures with a core magnetic field. The time history of the magnetic field B and three components Bx, By and Bz at a given point of the current sheet can reproduce the observational features of the events mentioned above.  相似文献   

2.
We analyze Double Star TC-1 magnetic field data from July to September in 2004 and find that plas-moids exist in the very near-Earth magnetotail. It is the first time that TC-1 observes the plasmoids inthe magnetotail at X > ?13 RE. According to the difference of the magnetic field structure in plasmoids,we choose two typical cases for our study: the magnetic flux rope on August 6 with the open magneticfield and the magnetic loop on September 14 with the closed magnetic field. Both of the cases are as-sociated with the high speed earthward flow and the magnetic loop is related to a strong substorm. Theions can escape from the magnetic flux rope along its open field line, but the case of the closed mag-netic loop can trap the ions. The earthward flowing plasmoids observed by TC-1 indicate that the mul-tiple X-line magnetic reconnection occurs beyond the distance of X=?10 RE from the earth.  相似文献   

3.
The characteristics of low-frequency waves in magnetic reconnection are studied using two-dimensional hybrid simulation code. In a coordinate system moving with fluid,the time series of a magnetic field perpendicular to the magnetic reconnection plane,By, is transformed into the power spectrum via fast Fourier transformation,while the wave propagation direction and polarization are determined by minimum variance analysis of the electric field.The results show that low-frequency Alfvén ion-cyclotron waves dominate the reconnection area.These waves have frequencies 0-1Ωp(where Ωp is the local proton gyro frequency)and all are left-handed circularly polarized.Among these waves,large-amplitude turbulence,with frequencies of 0-0.6Ωp and isotropic propagation,dominates the outflow regions.This can cause the reversal of By in the quadrupole structure.In the inflow regions, dominant waves,propagating mainly parallel to the ambient magnetic field,have higher frequencies and smaller amplitudes.The frequency of the main peak of wave energy is usually higher than 0.5Ωp.  相似文献   

4.
Two-dimensional particle-in-cell simulations are performed to investigate the formation of electron density depletions in collisionless magnetic reconnection.In anti-parallel reconnection,the quadrupole structures of the out-of-plane magnetic field are formed,and four symmetric electron density depletion layers can be found along the separatrices due to the effects of magetic mirror.With the increase of the initial guide field,the symmetry of both the out-of-plane magnetic field and electron density depletion layers is distorted.When the initial guide field is sufficiently large,the electron density depletion layers along the lower left and upper right separatrices disappear.The parallel electric field in guide field reconnection is found to play an important role in forming such structures of the electron density depletion layers.The structures of the out-of-plane magnetic field By and electron depletion layers in anti-parallel and guide field reconnection are found to be related to electron flow or in-plane currents in the separatrix regions.In anti-parallel reconnection,electrons flow towards the X line along the separatrices,and are directed away from the X line along the magnetic field lines just inside the separatrices.In guide field reconnection,electrons can only flow towards the X line along the upper left and lower right separatrices due to the existence of the parallel electric field in these regions.  相似文献   

5.
Based upon the observational data of the fast magnetic reconnection in the nearly collisionless magnetotail and the particle in cell (PIC)simulations on the electron acceleration in the reconnecting current sheet with guide magnetic field,we self consistently solved one dimension Vlasov equation with the magnetotail parameters and realistic mass ratio to explore the relationship between the anomalous resistivity and the induced electric field.As compared with theoretic formula for the current driven ion-acoustic and Buneman anomalous resistivity,the anomalous resistivity may result from the ion acoustic instability for small reconnecting electric field and the Buneman instability for large reconnecting electric field.The discrepancy between the theoretic results and numerical simulations may be caused by the high frequency instability that results from the deviation of electron distribution from Maxwellian one.These results are consistent with the early experimental results and favorable for the fast reconnection to take place.  相似文献   

6.
Claw poles are a key component of automobile generators. The output power performance of the generator is very dependent on the magnetic properties of its claw poles. Plastic deformation is known to significantly change the magnetic behavior of ferromagnetic materials in claw poles. In this paper, changes in the magnetic properties of low-carbon steel, used for claw pole components due to their plastic deformation, were investigated for different strains and temperatures. Ring-shaped material samples were prepared by machining and their magnetic properties were measured. The surface roughness was first evaluated and a machining process with an arithmetic average of roughness Ra 1.6 μm was selected as enabling the lowest measurement error. Hysteresis loops at different applied magnetic fields of the material were obtained for different plastic strains and forming temperatures. The magnetic parameters of magnetic flux density, coercivity, and remanence were obtained and compared with magnetic flux density as the primary focus. Results showed that machining, cold forming, and hot forming all led to lower magnetic flux density, larger coercivity, and smaller remanence. Magnetic flux density showed a sharp decrease at the start of plastic deformation, but as the strain increased, the decreasing trend gradually reached a constant value. The decrease was much larger for cold forming than for hot forming. For example, at 500 A/m, the degradation of magnetic flux density with a reduction percentage of 5% at room temperature was about 50%, while that of hot forming at 1200°C was about 10%. Results of this research may provide a reference for the future process design of hot-forged claw poles.  相似文献   

7.
Claw poles are a key component of automobile generators. The output power performance of the generator is very dependent on the magnetic properties of its claw poles. Plastic deformation is known to significantly change the magnetic behavior of ferromagnetic materials in claw poles. In this paper, changes in the magnetic properties of low-carbon steel, used for claw pole components due to their plastic deformation,were investigated for different strains and temperatures. Ring-shaped material samples were prepared by machining and their magnetic properties were measured. The surface roughness was first evaluated and a machining process with an arithmetic average of roughness Ra 1.6 μm was selected as enabling the lowest measurement error. Hysteresis loops at different applied magnetic fields of the material were obtained for different plastic strains and forming temperatures. The magnetic parameters of magnetic flux density, coercivity, and remanence were obtained and compared with magnetic flux density as the primary focus. Results showed that machining, cold forming, and hot forming all led to lower magnetic flux density, larger coercivity, and smaller remanence. Magnetic flux density showed a sharp decrease at the start of plastic deformation, but as the strain increased, the decreasing trend gradually reached a constant value. The decrease was much larger for cold forming than for hot forming. For example, at 500 A/m, the degradation of magnetic flux density with a reduction percentage of 5% at room temperature was about 50%, while that of hot forming at 1200℃ was about 10%. Results of this research may provide a reference for the future process design of hot-forged claw poles.  相似文献   

8.
We have examined the Wind data in 1996 and identified 21 small interplanetary magnetic flux ropes(SIMFRs),and all the 21 SIMFRs have boundary layer structures.The durations of the boundary layers varied from several minutes to 30 minutes.These boundary layers also have properties of high proton temperature,density,and plasma beta.These boundary layers are formed by magnetic reconnections.In addition,in three events magnetic reconnections were occurring inside the boundary layers.It indicates that the flux rope structures have propagated for some period of time,and their boundaries were still evolving through interaction with the background solar wind.Namely it is very possible that the SIMFRs came from the solar corona.  相似文献   

9.
Sediments of core YSJD-86GC (referred to as 86GC) collected from the southern South China Sea were selected for environmental magnetic studies. Combined with the published chronological framework, sediment magnetic properties were revealed for the study area since the MIS3 stage. The rock magnetic results indicate that low-coercivity magnetite is the main magnetic mineral within the sediments. Also, a certain amounts of hematite are present. The King plot and Day plot, which reflect the magnetic particle size, show that fine-grained pseudo-sin- gle-domain phase magnetic particles dominate the magnetic minerals in the sediments. Comparison of magnetic parameters and geochemical indicators show that magnetic properties of core 86GC sediments reflect a terrigenous input. Simultaneously, magnetic characteristics of the stud- ied sediment are influenced by the quantity of terrigenous sediment input, oxidation-reduction conditions of the provenance area, and the transportation environment and distance. Sea level fluctuation caused by global climate change was the main factor for variation in concentration of magnetic minerals and magnetic particle size of thestudied core sediments. Thus, variation of sediment magnetic properties in the study area can be used as an indirect indicator of sea level fluctuation.  相似文献   

10.
A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper,which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic change in its rheological properties by the application of an external magnetic field. The magneticfield of the disc-type MR fluid damper is analysed by the finite element method ; the controllability of the disctype MR fluid damper on the dynamic behaviour of a rotor system ; and the effectiveness of the disc-type MR fluid damper in controlling the vibration of a rotor system, are studied in a flexible rotor system with an over-hung disc. It is shown that the magnetic flux density of the disc-type MR fluid damper in the working areas can significantly change with the applied current in the coil ; and that the dynamic behavior of the disc-type MR fluid damper can be varied by the application of an external magnetic field produced by a low voltage electromagnetic coil. The disc-type MR fluid damper can significantly change the dynamic characteristics of a rotor system, provided that the location of the disk-type MR fluid damper is carefully chosen. The disc-type MR fluid damper is a new actuator with good dynamic characteristics for rotating machinery.  相似文献   

11.
Bidirectional propagation of lightning leader   总被引:4,自引:0,他引:4  
The characteristics of initial leader of triggered lightning flashes are studied by use of a highspeed digital camera system with the rate of 1 000 frame per second and simultaneous measurements of current and electric field change with 0.1 μS time resolution. The results show that the altitude-triggered lightning was initiated by bidirectional propagation leader because of "current interruption" by air gap, whereas the grounded-triggered one was not. The onset of downward-moving positive leader was prior to that of the upward-going negative leader for 843 ms in an altitude-triggered lightning under the positive ambient electric field. The downward-moving leader, regardless of its polarity, would produce in-homogeneous distribution of luminosity (current) along the channel on the moment of connection to the ground.  相似文献   

12.
Rheological property of a material is changed reversibly by an addition of electric field. The property is called electro-rheological (ER) effect, and the materials showed such an effect are named ER fluid in general.It is expected that the fluids are available for an application of mechanical fields like braking system, shock absorber one, and so on.  相似文献   

13.
A new SA (simulated annealing) method is presented for the design of longitudinal shim coils for NMR (nuclear magnetic resonance) equipment. First, AGL (adaptive Gauss-Lobatto) quadrature used by the traditional SA method is analyzed. Two kinds of complete elliptic integrals are introduced to integrate the spatial magnetic field, which increases the computing speed by 13.3 times. Then, the system energy calculation is extended to the field of the z-axis. The results illustrate that the coil-set efficiency designed by the new SA method is 15% higher than that of the traditional one, and the field inhomogeneity is reduced from 1.20% to 0.49%. Finally, a prototype of coil assembly for NMR rock-core analyzer is built, and the experimental results are in good agreement with the theoretically calculated results.  相似文献   

14.
Effects of static magnetic field on optic properties of water are investigated by infrared spectroscopy, ultraviolet spectroscopy and X-ray diffraction, respectively. The ultraviolet spectroscopy experiments show the changes of properties of water under action of static magnetic field, in the region of 191 to 400 nm. The infrared experiment shows that the water exposed in a magnetic field had saturation and memory effects. The magnetized effects increased with increasing exposed time, but were weakened with increasing of time when the magnetic field was removed. In the X-ray experiment, the strength of diffraction increased also, after the water was exposed in magnetic field. Meanwhile, the shift of peak and increase of strength of X-ray diffraction of magnetized water added with nanoFe3O4 occurred as compared with that of pure water added with nano Fe3O4. This result suggests that the magnetized wa- ter has certain magnetism. Finally, these phenomena are simply explained by the molecular structure of water and the theory of magnetization of water.  相似文献   

15.
Application of high magnetic fields in advanced materials processing   总被引:3,自引:0,他引:3  
Recently,steady magnetic fields avail-able from cryogen-free superconducting magnets open up new ways to process materials. In this paper,the main results obtained by using a high magnetic field to process several advanced materials are re-viewed. These processed objects primarily include superconducting,magnetic,metallic and nanome-ter-scaled materials. It has been found that a high magnetic field can effectively align grains when fab-ricating the magnetic and non-magnetic materials and make inclusions migrate in a molten metal. The mechanism is discussed from the theoretical view-point of magnetization energy.  相似文献   

16.
Anderson localization of non-interacting two-dimensional electron gas(2DEG)with spin-orbit interactions and in a magnetic field is studied.There are strong numerical evidences that symmetry and dimensionality alone are not enough to classify the metal-to-insulator transition(MIT)for conventionally called symplectic class.By numerically studying the MIT of 2DEG on a square lattice with Rashba,Dresselhaus,or SU(2)spin-orbit interactions(SOI)  相似文献   

17.
We have investigated the effects of high magnetic fields on the microstructures and magnetic properties of Fe-Si-O films deposited by RF sputtering. Three typical sample appearances, hole-in-center, phase-separation and hybridization were obtained for the Fe-Si-O films prepared in the oxygen-argon flow ratio VO2/Vtotal<1.0%, magnetic field Bappl≤1.0 T regime, indicating that not only the distribution of plasma but also the angular distribution of sputtered atoms are influenced by a high magnetic field. In the oxygen-argon flow ratio VO2/Vtotal>2.0%, magnetic field Bappl≥2.0 T regime, strong (110) orientation of Fe3O4 grains and larger remanence and coercivity measured in the direction normal to the film plane appeared in the Fe-Si-O films. This result indicates that the high magnetic fields not only orient the Fe-Si-O film but also induce remarkable perpendicular magnetic anisotropy during the deposition.  相似文献   

18.
The discovery of superconductivity in magnesium diboride (MgB2) has opened up a new field in materials science research. It offers a possibility of a new class of high performance superconducting materials for practical applications because of the relatively low cost of fabrication, high critical current densities (Jc) and fields, large coherence length, absence of weak links, higher Tc(TC = 39K) compared with Nb3Sn and Nb-Ti alloys (two or four times that of Nb,,Sn and Nb-Ti alloys). However, the weak flux pinning in the magnetic field remains a major challenge. This paper reports the most interesting results on nanomaterial (SiC and Si) doping in magnesium diboride. The high density of nano-scale defects introduced by doping is responsible for the enhanced pinning. The fabrication method, critical current density, microstructures, flux pinning and cost for magnesium diboride bulks, wires and tapes are also discussed. It is believed that high performance SiC doped MgB2 will have a great potential for m  相似文献   

19.
The NUADU (NeUtral Atom Detector Unit) instrument aboard TC-2 recorded 4л solid angle images of charged particles (E >180 keV) spiraling around the magnetic field lines in the near-Earth plasma sheet (at ~ -7 RE, equatorial dawn-to-night side) during a geomagnetic storm (Dst =-219 nT) on August 24, 2005. Energetic ion beam events characterized by symmetrical, ring-like, solid angle distributions around ambient magnetic field lines were observed during a 34-minute traversal of the plasma sheet by the TC-2 spacecraft. Also, observations during these multiple crossings of the plasma sheet were monitored by the magnetometer experiment (FGM) aboard the same spacecraft. During each crossing, a whistler-mode chorus enhancement was observed in the anisotropic area by the TC-2 low frequency electromagnetic wave detector (LFEW/TC-2) at a frequency just above that of the local lower hybrid wave. A comparison of the ion pitch angle distribution (PAD) map with the ambient magnetic field shows that an enhancement in the field aligned energetic ion flux was accompanied by tailward stretching of the magnetic field lines in the plasma sheet. In contrast, the perpendicular ion-flux enhancement was accompanied by a signature indicating the corresponding shrinkage of the magnetic field lines in the plasma sheet. Since both parallel ion-flux and perpendicular ion-flux enhancements occurred intermittently, the data were interpreted to imply a dynamical, oscillatory process of the magnetic field line (stretching and shrinking) in the near-Earth plasma sheet, which might have acted to help establish an interaction region in this area which would support continuous aurora-substorm triggering during the ongoing magnetic storm. The whistler-mode chorus may have been produced due to ion gyro-resonance during particle pitch angle diffusion after the plasma sheet compression.  相似文献   

20.
The influence of direct current (DC) electric field on the thickness and mass of frost on a cold vertical plate was investigated. The photos of frost layer growth were taken with and without the presence of electric field, and results showed that the electric field has a strong influence on the frost thickness. The influences of cold plate temperature and ambient temperature on frost thickness and frost mass were also investigated under the natural convection condition with electric field. Experimental results demonstrated that the cold plate temperature has very strong effect on the frost layer thickness, but its influence on frost mass is minor; the influence of ambient temperature on the frost mass is more obvious than that on the frost thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号