首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
State transition and blue-green light-induced fluorescence quenching are two short-term processes in cyanobacteria. The details of their kinetics and the relationship between these processes have not been elucidated.In this work, these two processes were studied in the wildtype cyanobacterium Synechocystis PCC 6803 cells as well as in apc D-and apc F-mutants by monitoring their timedependent 77 K fluorescence responses to blue-green light(430–540 nm) at a series of intensities ranging from20–800 l E m-2s-1. The lowest light intensity to induce fluorescence quenching in wild-type cells was160 l E m-2s-1under the selected experimental conditions, while state transition took place at the intensities lower than 160 l E m-2s-1at a conservative level, but at variable rates. The quenching level increased at intensities higher than 160 l E m-2s-1, reaching the maximum level at intensities equal to or higher than 200 l E m-2s-1.Fluorescence kinetics indicated that both the length of the induction period and time required to reach the maximum level were functions of light intensity. State transitions as well as fluorescence quenching took place in both wildtype and mutant cells, but might involve different mechanisms.  相似文献   

2.
The mechanisms of oxygen evolution and carbon fixation in oxygenic organisms depend on the equal distribution of excitation energy to photosystems Ⅰ and Ⅱ, which is regulated by a mechanism referred to as light-state transition. In this work, a novel mechanism, energy spillover from PS Ⅰ to PS Ⅱ referred to as "inverse spillover", was revealed besides "mobile phycobilisome (PBS)" and the "spillover" of energy from PS Ⅱ to PS Ⅰ in cyanobacteria. Under continuous illumination with blue light, time-dependent 77-K fluorescence spectra demonstrated heterogeneous kinetics for the PBS and photosystem components, indicating that inverse spillover and mobile PBS work successively to regulate the excitation to a balanced distribution in cyanobacterial cells under blue light. Inverse spillover and mobile PBS occur under both 100 and 300 μmol m-2 s-1 blue-light conditions but they are accelerated under the latter.  相似文献   

3.
The growth and activity of photosynthetic CO2 uptake and extracellular carbonic anhydrase (CAext) of the marine diatom Skeletonema costatum were investigated while cultured at different levels of CO2 in order to see its physio-logical response to different CO2 concentrations under either a low (30 靘ol·m-2·s-1) or high (210 靘ol·m-2·s-1) irradiance. The changes in CO2 concentrations (4—31 靘ol/L) affected the growth and net photosynthesis to a greater extent under the low than under the high light re-gime. CAext was detected in the cells grown at 4 mol/L CO2 but not at 31 and 12 靘ol/L CO2, with its activity being about 2.5-fold higher at the high than at the low irradiance. Photo- synthetic CO2 affinity (1/ K1/2(CO2)) of the cells de-creased with increased CO2 concentrations in culture. The cells cultured under the high-light show significantly higher photosynthetic CO2 affinity than those grown at the low-light level. It is concluded that the regulations of CAext activity and photosynthetic CO2 affinity are dependent not only on CO2 concentration but also on light availability, and that the de-velopment of higher CAext activity and CO2 affinity under higher light level could sufficiently support the photosyn-thetic demand for CO2 even at low level of CO2.  相似文献   

4.
The kinetics of removal of loss on ignition (LOI) by thermal decomposition of hydrated minerals present in natural iron ores (i.e., kaolinite, gibbsite, and goethite) was investigated in a laboratory-scale vertical fluidized bed reactor (FBR) using isothermal methods of kinetic analysis. Experiments in the FBR in batch processes were carried out at different temperatures (300 to 1200℃) and residence time (1 to 30 min) for four different iron ore samples with various LOIs (2.34wt% to 9.83wt%). The operating velocity was maintained in the range from 1.2 to 1.4 times the minimum fluidization velocity (Umf). We observed that, below a certain critical temperature, the FBR did not effectively reduce the LOI to a desired level even with increased residence time. The results of this study indicate that the LOI level could be reduced by 90% within 1 min of residence time at 1100℃. The kinetics for low-LOI samples (<6wt%) indicates two different reaction mechanisms in two temperature regimes. At lower temperatures (300 to 700℃), the kinetics is characterized by a lower activation energy (diffusion-controlled physical moisture removal), followed by a higher activation energy (chemically controlled removal of LOI). In the case of high-LOI samples, three different kinetics mechanisms prevail at different temperature regimes. At temperature up to 450℃, diffusion kinetics prevails (removal of physical moisture); at temperature from 450 to 650℃, chemical kinetics dominates during removal of matrix moisture. At temperatures greater than 650℃, nucleation and growth begins to influence the rate of removal of LOI.  相似文献   

5.
In acid medium, rhodamine B(RhB), rhodamine S(RhS), rhodamine 6G(RhG) and butyl rhodamine B(b-RhB) have a fluorescence peak at 580, 549, 553 and 580nm, respectively. BrO^-3 oxidizes excess I^- into I^-3 Rhodamine dyes combine I^-3 to form ion association nanoparticles, resulting in fluorescence quenching at 580, 549, 553 and 580 rim, respectively. The fluorescence quenching intensity is proportional to the concentration of BrO^-3 in the range of 0.020 4 - 0.710 μg/mL for RhB, 0.025 - 0. 512μg/mL for RhS, 0.025 - 0.260 μg/mL for RhG, 0.025 - 1.28μg/mL for b-RhB, respectively. In the four systems, RhB system has good stability and high sensitivity. Thus, a simple, sensitive fluorescence method was proposed for the determination of BrO^-3 in commercial bread additives and flours, with satisfactory results. The results of the fluorescence spectra and scan electron microscopy show that the formation of about 60 ran (RhB - I^-3) n association nanoparticles and the interface between the nanoparticles and solution are main factors that cause the fluorescence quenching.  相似文献   

6.
Bulk material of (Se80Te20)100 xAgx (0rxr4) system was prepared by using a conventional melt quenching technique. Thin films of a-(Se80Te20)100 xAgx (0rxr4) were deposited by the vacuum evaporation technique at a base pressure of 10 4 mbar onto well-cleaned glass substrates. Temperature dependence of electrical conductivity in the temperature range of 263–333 K has been studied. There is increase in the value of conductivity with increase in temperature as well as with Ag content. The measurements of intensity dependence of photoconductivity show that the photoconductivity increases with intensity as a power law where the power is found to be between 0.5 and 1.0, representing the continuous distribution of traps. Rise and decay of photocurrent with time at room temperature at different light intensities for (Se80Te20)98Ag2 thin film samples have also been reported. The results have been explained on the basis of the Dember voltage and interaction between photoexcited holes and the trapped electrons on the surface.  相似文献   

7.
It is of great significance in exploring alternative catalysts to platinum (Pt)-based materials for oxygen reduction reaction (ORR),because this reaction is invariably involved in various fuel cells and metal-air batteries.We herein reported the nitrogen doped graphene nanosheets (NGNSs) with pore volume of as high as 3.42 m 3 /g and investigated their potential application as ORR catalysts,it was demonstrated the NGNSs featured high activity,improved kinetics and excellent long-term stability for ORR.The NGNSs were successfully used as cathode catalysts of microbial fuel cells (MFCs) and performed even better than the commercial Pt/C (Pt 10%) catalysts at the maximum power output.  相似文献   

8.
DTA, thermal expansion, XRD, and SEM were used to evaluate the effect of quenching temperature on the mechanical properties and microstructure of a novel sintered steel Fe-6Co-1Ni-5Cr-5Mo-1C. Lattice parameters and the mass fraction of carbon dissolved in the matrix of the steel quenched were investigated. It is discovered that the hardness of the steel increases with quenching temperature in the range of 840-900℃ and remains constant in the range of 900 to 1100℃. It decreases rapidly when the temperature is higher than 1100℃. The mass fraction of carbon dissolved in the matrix of the steel quenched at 840℃ is 0.38, but when the quenching temperature is increased to 1150℃, it increases to 0.98. The carbides formed during sintering are still present at grain boundaries and in the matrix of the steel quenched at low quenching temperatures, such as 840℃. When the quenching temperature is increased to 1150℃, most of the carbides at grain boundaries are dissolved with just a small amount of spherical M23C6 existing in the matrix of the quenched steel.  相似文献   

9.
A light-harvesting chlorophyll a/b-protein complex (LHCP) was isolated directly from thylakoid membranes of marine green alga, Bryopsis corticulans, by two consecutive runs of liquid chromatography. The trimeric form of the light-harvesting complex has been obtained by sucrose gradient ultracentrifugation. The result of SDSPAGE shows that the light-harvesting complex is composed of at least five apoproteins in which a protein with apparent molecular weight of about 31 kD was never found in the major light-harvesting complex (LHC II ) from higher plants. The isolated Bryopsis corticulans light-harvesting complex contains a specific carotenoid, siphonaxanthin, as well as chlorophyll (Chl) a, Chl b, neoxanthin and violaxanthin. Siphonaxanthin which is present in the light-harvesting siphonaxanthin-chlorophyll a/b-protein complex of Bryopsis corticulans is responsible for enhanced absorption in the blue-green region (530 nm). Efficient energy transfer from both siphonaxanthin and Chl b to Chl a in Bryopsis corticulans LHCP, which has similar absorption and fluorescence emission spectra to those of the lutein-chlorophyll a/b-protein of higher plants, proved that molecular arrangement of the light-harvesting pigments was highly ordered in the Bryopsis corticulans LHCP. The siphonaxanthin-chlorophyll a/b-proteins allow enhanced absorption of blue-green light, the predominant light available in deep ocean waters or shaded subtidal marine habitats.  相似文献   

10.
A series of light-emitting conjugated polymers alternatively involving carbazole and bivinylene arylene moieties in the main chain were synthesized via Wit-tig-Horner type copolymerization.The photoinduced charge transfer process relating to these polymers was investigated by using the technique of fluorescence spectroscopy.The interaction between excited copolymers and C60 in benzene solution was studied.The fluorescence quenching can be well described by the “sphere-of-action” mechanism.It is be-lieved that two basic steps are involved in the quenching process,i.e. the diffusion of excitation within the comjugated polymers and the dissociation of the exctions trapped by fullerene,The radius of the sphere-of-action can be related to the excitation diffusion length,which depends on the lifetime of the exciton.The dynamic fluorescence quenching of the copolymers by another quencher,1,4-dicyanobenzene(DCB) was also surveyed.Copolymers with different chain confor-mations show different temperature effects in the dynamic quenching.A planar conformation is beneficial for the quenching via bimolecular collision.  相似文献   

11.
Steady-state and time-resolved fluorescence spectroscopies have been used to study the excited state properties of Chl a in different aggregation forms of light-harvesting complex Ⅱ (LHC Ⅱ) from an intertidal green alga, Bryopsis corticulans, i.e. LHC Ⅱ monomer, trimer and oligomer. When either Chl a or Chl b was selectively excited, the observed decrease in Chl a fluorescence in the oligomer is proved to be caused mainly by the fast fluorescence quenching among Chl a molecules, rather than by the decrease in Chl b-to-Chl a singlet excitation transfer efficiency. Analyses of the picosecond time-resolved fluorescence kinetics identified two exponential decay components in all of the three forms of LHC Ⅱ: a longer-lived component (4.1 -4.7 ns) originating from fluorescence emission of Chl a, and a shorter-lived one (135-540 ps) from the rapid equilibration of singlet excitation among Chl a molecules. The time constant of excitation equilibration is 135 ps in oligomer, 520 ps in trimer and 540 ps in monomer. These results imply that LHC Ⅱ in oligomer form is inherently able to quench Chl a excitation, a mechanism which may be related to the photoprotection of PS Ⅱ via changing the degree of LHC Ⅱ aggregation in Bryopsis corticulans.  相似文献   

12.
Male Chinese loaches were exposed to 17β-estradiol (E2) and nonylphenol (NP) both singly and in combination for 42 days using semi-static waterborne exposure system. Plasma vitellogenin (Vtg) was chosen as determining endpoint. The results demonstrated that 0.5 μg/L E2 could induce the enhancement of Vtg contents in male Chinese loaches after exposure for 21 days, which showed a time-related increasing manner; NP was also estrogenic to male Chinese loach, and the vitellogenic responses showed in a time-and dose-related manner, which was less potent than that of E2. The bi- nary mixtures of E2 and NP can significantly elicit the production of Vtg in male Chinese loaches, which was more potent than that of individual compounds, and Vtg induced in the binary mixture groups was higher than the summation of Vtg induced in the corresponding single-compound groups at the same concentration.  相似文献   

13.
In order to investigate stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint area in acidic soil environment in China, two simulating methods were used:one was to obtain bad microstructures in heat affected zone by annealing at 1300℃ for 10 min and then, quenching in water; the other was to get different simulating solutions of acidic soil in Yingtan in south-east China. The SCC susceptibilities of X70 pipeline steel before and after quenching in the simulating solutions were analyzed using slow stain rate test (SSRT) and potentiodynamic polarization technique to investigate the SCC electrochemical mechanism of different microstructures further. The results show that SCC appears in the original microstructure and the quenched microstructure as the polarization potential decreases. Hydrogen revolution accelerates SCC of the two tested materials within the range of -850 mV to -1200 mV vs. SCE. Microstructural hardening and grain coarsening also increase SCC. The SCC mechanisms are different, anodic dissolution is the key of causing SCC as the polarization potential is higher than the null current potential, and hydrogen embrittlement will play a more important role to SCC as the polarization potential lower than the null current potential.  相似文献   

14.
15.
The hardness, wettability, and electrochemical properties of Ti6Al4V alloy surfaces treated with anodic oxidation and plasma oxidation as well as the viabilities of the different cell lines on the obtained surfaces were investigated. The anodic oxidation was performed for 10 min under 100 V potential, and it resulted in a 0.95 μm thick nanoporous anatase-TiO_2 structure. On the other hand, plasma oxidation was carried out at 650℃ for 1 h and resulted in a dense rutile-TiO_2 structure with a thickness of 1.2 μm. While a hardness of HV_(0.025) 823 and roughness of ~220 nm were obtained by plasma oxidation, those obtained by anodic oxidation were HV_(0.025) 512 and ~130 nm, respectively. The anodic oxidation process created a more hydrophilic surface with a contact angle of 87.2°. Both oxidation processes produced similar properties in terms of corrosion behavior and showed better resistance than the as-received state in a certain range of potential. Moreover, the surface treatments led to no significant change in the protein adsorption levels, which indicates that the difference in viability between the osteoblast and fibroblast cells was not due to the difference in surface protein adsorption. Given all the factors, the surfaces obtained by anodic oxidation treatment revealed higher cell viability than those obtained by plasma oxidation(p = 0.05).  相似文献   

16.
Great attention has recently been drawn to developing cost-effective, high efficiency solar cells to meet the ever increasing demand for clean energy. We have most recently witnessed a breakthrough and a rapid development in solid state, hybrid solar cells using or- ganolead halide perovskites as light harvesters. These semiconductors can not only serve as sensitizer in solid state sensitized solar cells with efficiency up to unprece- dented 15 %, but also function as both light absorber and hole conductor (or electron conductor) at the same time to display power conversion efficiency above 10 %. In this review, we will introduce their operation mechanism, structure, and especially the development of the organolead halide perovskite based solar cells. Based on the achieve- ments that have been made to date, solid state photovoltaic device with superior performance than the present one is highly expected.  相似文献   

17.
The authors investigated the heterogeneous size patterns and dynamic growth of the ramet population of Panicum virgatum, a clonal caespitose plant, limited to the space occupied by a ramet bunch and the time of the ramet yearly life cycle, to understand the ecology of clonal caespitose plants in the field, where the ramet bunch generally consisted of more than one genet. Dynamic life tables for ramet populations were established by the replacement of living ramets at the present time with "dead" ones in past time. These tables revealed stable coexisting patterns of isometric and allometric growing processes of ramets in mass and height respectively, which approximately followed the historic trajectory of a density-independent population. The ecology of clonal caespitose plants is further discussed based on the competitively random growth of ramet individuals, including the scale of foraging behavior. In the field, the ramet population ecology of switchgrass may be a statistical result of competitively random growth of ramet individuals. The foraging behavior of a ramet population could then be presented as a process in which ramet individuals competed with each other for light and grew randomly, while at the same time a relatively stable dynamic growth pattern was apparent at the level of the ramet population, and the functional leaves were placed properly in time and space.  相似文献   

18.
Poly ( vinylidene fluoride ) ( PVdF )-based gel polymer electrolytes with various compositions were prepared by solution casting technique, The kinetics of gelation was analyzed via the correlation between the apparent gelation rate and concentration of PVdF at a given temperature, Combination the results of the kinetics of gelation and the DSC study, it revealed that the phase separation was the major behavior and the fibrils were the major junction joints of the three-dimensional network even in the case the concentration of PVdF was higher than 25 wt%. The porous surface observed by ESEM also reflected that the phase separation took place during the gelation.  相似文献   

19.
Hailuogou Glacier is located in a warm and humid maritime environment. It is large and moves very fast. The bottom of the glacier slides intensively and the temperature at the bottom approaches the pressure melting point. Therefore, there are abundant melting water and debris which act as effective "grinding tools" for glacial abrasion. Polarizing microscope is used to observe the mineral deformation characteristics on the ice-bedrock interface. It is found that feldspar, quartz, hornblende and biotite are exposed to deformation, fracture and chemical alteration to various extents. Bending deformation is common for biotite, due to their lattice characteristics, and the bending orientations are mostly the same as the glacier flow. Bending deformation also occurs in a few hornblendes. High-angle tension fracture and low-angle shear fracture are common for quartz and feldspar, some of them are totally crushed (mylonizations) due to their rigidity. Thus, all the abrasion, quarrying, subglacial water action and subglacial dissolution processes at the bottom of the glacier are verified at the micro-scale level. Mineral deformation and fracture are the basic subglacial erosion mechanisms. The abrasion thickness is 30-90 μm for each time and the average is 50 μm. Most of the debris are silt produced by glacial abrasion. The extent of mineral deformation and fracture decreases drastically downwards beneath the bedrock surface. The estimated erosion rate is about 2.2-11.4 mm/a, which is similar to that of other maritime alpine glaciers, smaller than that of large-scale piedmont glaciers in Alaska (10-30 mm/a), and larger than that of continental glaciers (0.1-1.0 mm/a). The type and size of a glacier are the main factors that influence its erosion rate.  相似文献   

20.
Sporadic sodium layers (SSLs) were studied with sodium (Na) lidar at Beijing (40.5°N, 116.0°E) and Haikou (19.5°N, 109.1°E) in China. The altitude distribution, strength factors, and occurrence time of SSL and sporadic E (Es) layer events were statistically analyzed at both observing sites. SSL occurrence had a maximum near 22:00 local time, and Es layer occurrence had a maximum before midnight. The altitude distributions of SSL and Es layer events were better correlated at Haikou than at Beijing. All the average values of height and strength factor for SSL and Es layer events, as well as the average of the maximum frequency that can be reflected by the Es layer (fo Es), at Beijing were higher than those at Haikou. A better correlation between SSL and Es layer events was also found at Haikou, and the formation of SSLs was considered to likely depend on the seasonal variability of chemical and dynamical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号