首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
针对上良煤矿32203工作面瓦斯涌出量大的情况,通过分析32203工作面瓦斯涌出的来源,确定邻近层瓦斯抽采是治理工作面瓦斯的最有效的方法,提出在32203工作面上邻近层实施高位钻孔、下邻近层实施底抽巷瓦斯抽采的瓦斯治理方案,对于工作面瓦斯治理来说有一定的指导价值。  相似文献   

2.
郑少鹏  白金星 《科技资讯》2012,(20):110-110
矿井瓦斯是严重威胁煤矿安全生产的自然灾害之一。抽放瓦斯可以降低采区、工作面瓦斯涌出量,能有效的解决瓦斯浓度超限,提高矿井安全性,因此矿井瓦斯抽放是治理瓦斯有效手段。  相似文献   

3.
为降低赛尔能源三矿A4007工作面瓦斯含量,本文计算了巷道煤壁瓦斯涌出量、落煤瓦斯涌出量,以及开采层相对瓦斯涌出量,并分析了工作面瓦斯涌出规律.得出回采工作面相对瓦斯涌出量为1.54 m~3/t,绝对瓦斯涌出量为3.11 m~3/min,占涌出总量的15.6%,工作面瓦斯主要来源于采空区.针对性的提出工作面采用采空区埋/插管抽放,老空区封闭插管抽放,本煤层预抽、边采边抽、强化抽放,上隅角密闭抽放.对抽采效果进行检验,治理后上隅角瓦斯浓度基本控制在1%以下,其平均瓦斯浓度为0.668%,极小值为0.3%,极大值为0.84%.回风流瓦斯浓度基本控制在0.4%以下,平均瓦斯浓度为0.264%,极小值为0.12%,极大值为0.38%.  相似文献   

4.
为了提高工作面瓦斯抽放效果、排除上隅角瓦斯超限的隐患,通过工作面预抽瓦斯试验以及建立预抽期评价模型,确定合理的预抽参数以达到最佳的抽放效果。试验表明预抽率随时间延长有整体增加的趋势,但增加的速度逐渐减小并趋于零。当钻孔间不存在抽放效应重叠时,不同间距的钻孔组有各不相同极限抽放率,孔间距越小,极限抽放率越大。合理预抽参数的确定对于提高瓦斯抽放效果,保障矿井的安全生产具有重大意义。  相似文献   

5.
对王坡矿3208工作面上隅角瓦斯超限原因进行了分析,根据理论计算和多年瓦斯治理的经验,提出了采空区高位钻孔抽采和在瓦斯尾巷埋管抽采相结合的瓦斯综合治理措施。  相似文献   

6.
为降低亭南矿204工作面上隅角及回风巷的瓦斯浓度,通过对204工作面采场瓦斯运移规律及积聚区域的研究分析,针对性地采用了上隅角埋管抽采、高位巷抽采和注氮隔离瓦斯的技术措施.实验结果表明,上隅角埋管及高位巷抽采措施的联合运用使上隅角瓦斯抽采量达到了40.98 m3/min,降低了上隅角瓦斯浓度,防止了上隅角瓦斯积聚,同时缓解了回风巷的瓦斯压力.注氮隔离瓦斯技术在工作面方向形成一个瓦斯隔离带,阻止了采空区瓦斯进入采煤工作面,降低了采煤工作面的瓦斯浓度,亭南矿204工作面瓦斯治理措施的实施成功地防止了瓦斯事故的发生,确保了矿井的安全生产.  相似文献   

7.
为研究瓦斯矿井本煤层准确测定瓦斯有效抽采半径问题,提出了利用吨煤瓦斯抽采量计算钻孔瓦斯有效抽采半径的测定方法.基于瓦斯钻孔衰减负指数规律建立钻孔瓦斯抽采模型,解算出吨煤瓦斯抽采量,并与其煤层原始瓦斯含量对比,得出煤层残存瓦斯含量Wc和抽采率η,以此判断钻孔瓦斯有效抽采半径,只有同时满足{Wc≤8m3/t∩η≥30%},才为钻孔瓦斯有效抽采半径.研究结果表明:随着预抽时间延长,钻孔瓦斯有效抽采半径逐渐增大,直至极限抽采半径.通过工程实践,分析了不同时间的有效抽采半径,为瓦斯矿井抽采工作提供了可靠的抽采参数,具有实际应用价值.  相似文献   

8.
上良煤业是煤与瓦斯突出矿井,煤层属于低透气性煤层。针对上良煤业低透气性煤层瓦斯抽采难题,以该矿32206首采工作面为试验工作面,应用CO2预裂爆破增透技术,提高了煤层的透气性及瓦斯抽采率,降低了煤层瓦斯含量和瓦斯压力,消除了工作面煤层的突出危险性,技术效果显著,可为类似煤矿煤层瓦斯抽采提供借鉴。  相似文献   

9.
为了解决高产高效工作面多瓦斯涌出源、瓦斯涌出量大的问题,结合矿井的地质开采条件,提出了实施综合瓦斯抽放方法,即开采煤层瓦斯采前预抽、卸压邻近层瓦斯边采边抽、本煤层抽放瓦斯、采空区瓦斯抽放等多种方法在一个工作面的综合应用。此方法在空间和时间上为瓦斯抽放创造更多的有利条件,将钻孔抽放与巷道抽放结合起来,大幅度提高了瓦斯抽放率,从而降低瓦斯抽放成本,保证了矿井安全生产。  相似文献   

10.
介绍了瓦斯抽放在煤矿安全生产中的意义和模式,提出了瓦斯预抽、抽放效果评价、强化瓦斯抽放管理等措施,促进瓦斯抽放。  相似文献   

11.
瓦斯抽采系统是实现矿井煤与瓦斯共采的重要环节,包括了井下煤层瓦斯钻孔、钻场、抽采管路系统、地面抽放泵站以及瓦斯利用系统等。瓦斯抽采系统工作性能优劣,对于矿井瓦斯灾害防治以及瓦斯有效利用尤为重要,有必要对煤矿瓦斯抽采系统运行情况进行系统的可靠性评价和综合安全性评价,以验证煤矿瓦斯抽采系统是否可靠和安全。  相似文献   

12.
钻孔预抽煤层瓦斯是目前治理矿井瓦斯的主要措施。以瓦斯渗流理论为基础,以钻孔抽采周围流场为径向流场,建立了钻孔周围瓦斯流动数学方程;并结合鹤煤九矿3104工作面具体抽采条件,利用COMSOL Multiphysics软件对钻孔预抽煤层瓦斯在不同抽采时间、不同抽采负压和不同钻孔直径下周围瓦斯压力分布进行数值模拟。并将上述模拟结果确定的抽采钻孔布置参数在3104采煤工作面进行煤层瓦斯预抽实践;抽采后经效果检验,残余瓦斯压力、残余瓦斯含量等均与《煤矿瓦斯抽采基本指标》中的相关规定相符合,3104工作面已经消除了煤与瓦斯突出的危险性。  相似文献   

13.
孙文革 《安徽科技》2010,(11):44-46
杨庄煤矿1966年投产,随着开采深度的增加,瓦斯涌出量增大,目前深部三、四水平(标高为-800m)为主采水平,杨庄煤矿主采5煤层在-450~-800m范围内,工作面相对瓦斯涌出量为6.10~11.14m^3/t。以往采用的高位钻孔瓦斯抽放技术存在抽放钻孔层位定位不准、瓦斯抽放效果不稳定、有效抽放钻孔长度短、钻孔利用率低、过钻场时工作面及上隅角瓦斯超限时有发生等不足。因此,需通过提高钻场高度,优化水平钻孔布置参数,  相似文献   

14.
赵磊 《科技信息》2014,(10):9+21
通过瓦斯抽采的必要性和可行性分析,得出石港矿具备瓦斯抽采的条件,石港矿可以且必须采用瓦斯抽采的方法治理瓦斯。针对本煤层、邻近层和上隅角的瓦斯超限问题,15109综放面采取了本煤层、邻近层抽采和高抽巷风排瓦斯相结合的瓦斯治理措施,针对初采期还专门采用了工艺巷预裂爆破技术和后伪高抽巷抽采瓦斯技术。  相似文献   

15.
在对试验区域实测的各煤层瓦斯体积含量的基础上,应用分源预测的方法计算了其瓦斯涌量,并根据试验区域不同煤层和不同瓦斯涌出源的实际情况,兼顾抽采率和抽采负压大小,提出了分源分系统抽采方案,同时重点分析了瓦斯抽采量和抽采规模等瓦斯抽放关键参数,实现了有针对性的强化抽采,以充分发挥瓦斯抽放高、低负压系统的抽采能力,使之为瓦斯治理发挥重要的作用。抽采出的高、低浓度瓦斯采用不同的利用方式,有利于提高瓦斯能源的利用率和经济效益。  相似文献   

16.
庞宇峰 《科技信息》2009,(27):I0370-I0370
煤矿地面瓦斯抽放站是整个瓦斯抽放系统的控制性节点,由于抽放站内机组设备运行连续性强和瓦斯气体的易燃易爆性,因此提高煤矿地面瓦斯抽放站监控系统的可靠性是关系到煤矿瓦斯抽放工作的有效途径。本文针对煤矿瓦斯抽放监控系统分析并提出了一些提高系统可靠性的技术措施。  相似文献   

17.
王正国 《甘肃科技》2012,28(16):45-47,101
随着煤层开采深度不断增加,煤层瓦斯含量增大;同时回采工作面实现了采煤机械化,产生了大量高产高效工作面,使得原来工作面瓦斯含量不大的矿井,也逐渐变成上隅角瓦斯积聚超限,给矿井安全生产带来巨大隐患.详细地分析了采煤工作面上隅角瓦斯超限的原因及上隅角瓦斯治理技术,并根据A采煤工作面实际情况,通过采用风量调节、本煤层瓦斯钻孔抽放、采用引风帘解决上隅角瓦斯、采空区瓦斯抽排和上隅角瓦斯抽排相结合的方法,使采煤工作面上隅角瓦斯浓度得到有效控制,实现了采煤工作面安全生产,同时对防治其他采煤工作面上隅角瓦斯积聚超限有一定的参考价值.  相似文献   

18.
煤层瓦斯抽放既能解决煤矿瓦斯灾害,又能使抽放出的瓦斯用于工业及民用、变废为宝.通过煤层注热技术增加吸附态瓦斯的解吸,增加瓦斯在渗流通道中的运移压力梯度,增大瓦斯抽放量.结合注热瓦斯抽放理论规律,运用瓦斯渗流方程、煤岩体导热方程建立了注热瓦斯抽放的数学模型,对模型中的瓦斯方程进行了线性近似,对瓦斯渗流方程和煤岩导热微分方程的泛函及离散过程进行了详细分析,并列出了注热瓦斯抽放数学模型的数值解算程序框图.  相似文献   

19.
徐培铭  周伟 《科技信息》2011,(11):339-339
煤矿工作面采取地面抽放瓦斯,大大减少材料的投入提高抽放效果,提高了安全生产效率。  相似文献   

20.
针对高瓦斯综采工作面瓦斯含量高、瓦斯涌出量大、开采强度大等特点,提出在回采巷道掘进和工作面回采过程中进行瓦斯立体抽采的治理方法,巷道掘进期间通过底抽巷穿层钻孔与掘进工作面顺层钻孔形成立体抽采系统;工作面回采期间利用底抽巷穿层抽采、工作面顺层抽采和高抽巷组成立体抽采系统,确定了瓦斯立体抽采的主要技术参数;结合赵庄煤矿1307工作面实际的地质条件和开采条件,进行了瓦斯立体抽采试验.研究结果表明:瓦斯立体抽采大幅度降低了工作面的瓦斯含量,瓦斯抽排率达到69.28%,瓦斯抽采效果显著,是一种良好的瓦斯治理方法,实现了工作面掘进和回采期间的安全生产.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号