首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
对TC4钛合金的熔覆试样进行激光冲击强化试验,比较了激光冲击强化前后试样的显微硬度、表面残余应力、显微组织和疲劳性能.TC4钛合金熔覆后,修复区表面残余拉应力为225 MPa,激光冲击强化消除了熔覆产生的拉应力,产生了449 MPa的残余压应力,在基体残留的压应力高达672 MPa;激光冲击强化后,修复区硬度由强化前的333 HV提高到381 HV.TEM显示:3次冲击后,在TC4材料表面形成了纳米晶层.对强化前后的激光熔覆试样进行高周疲劳试验,结果表明:激光冲击强化提高熔覆后钛合金疲劳强度达15.8%.经分析,冲击后细化晶粒和残余压应力对高周疲劳性能的提高起到了关键作用.  相似文献   

2.
对TC4钛合金的熔覆试样进行激光冲击强化试验,比较了激光冲击强化前后试样的显微硬度、表面残余应力、显微组织和疲劳性能.TC4钛合金熔覆后,修复区表面残余拉应力为225 MPa,激光冲击强化消除了熔覆产生的拉应力,产生了449 MPa的残余压应力,在基体残留的压应力高达672 MPa;激光冲击强化后,修复区硬度由强化前的333 HV提高到381 HV.TEM显示:3次冲击后,在TC4材料表面形成了纳米晶层.对强化前后的激光熔覆试样进行高周疲劳试验,结果表明:激光冲击强化提高熔覆后钛合金疲劳强度达15.8%.经分析,冲击后细化晶粒和残余压应力对高周疲劳性能的提高起到了关键作用.  相似文献   

3.
在目前激光材料强化技术的发展阶段中,为强化工艺和提高被强化表面的质量而采用了以下几项先进技术:(1)开发新的吸收层用于提高被强化表面对激光射线的吸收率;(2)研制检测材料吸收率和激光辐射工作区的瞬时温度的新仪器去控制激光强化处理条件;(3)寻找适于激光合金化和熔覆的新材料成分;(4)研究综合工艺。  相似文献   

4.
激光熔覆技术是一种先进的表面改性技术 ,具有广阔的应用前景 .本文介绍了激光熔覆技术的概念、工艺特点、材料表面强化处理技术的应用及存在的主要问题 ,同时指出了激光熔覆技术的发展方向 .  相似文献   

5.
李健 《科技信息》2012,(3):85-86
介绍了激光熔覆技术的原理与特点,重点综述了激光熔覆技术在海洋工程上的研究与应用现状,指出了激光熔覆技术在海洋工程上实际应用存在的问题。  相似文献   

6.
激光自熔覆是一种利用激光进行特定材料表面强化的工艺,在激光自熔覆系统中,获取移动热源的复杂轨迹点是至关重要的.工程应用中,工件表面的激光自熔覆往往涉及复杂的三维路径,复杂路径所产生的三维坐标点不能使用通常的二维函数来简单表达.本研究通过有限元模拟激光自熔覆工艺过程,先用建模软件根据实验试样建立自熔覆轨迹复杂的三维模型,导入到有限元软件中进行分析,然后针对工业生产中常用的汽车模具材料GGG70L(德标球墨铸铁)建立逼近真实的有限元模型,提出线性插值方法并运用在移动热源子程序中,实现了复杂三维自熔覆轨迹的模拟.采用激光光斑20 mm,激光扫描速率8 mm/s,激光功率2 800 W,将有限元模拟形变量的实验与工程实验进行对比分析,结果表明两者的平均误差约为0.7%,误差范围在实际工程可接受的范围之内,说明有限元模型和模拟结果可靠,可在一定程度上代替工程实验,从而提高激光淬火实验的效率并节省成本.  相似文献   

7.
综述了包括电弧离子镀、激光熔覆等金属材料表面强化过程中涂层与基体的结合机理、强化工艺,阐述了各种强化技术,涂层与基体材料的成分、结构匹配,对比分析了覆层的应力状态、工艺方法等对覆层结合强度的影响,介绍了各强化技术的优点、应用现状,并对存在问题提出了解决途径,对发展趋势进行了展望.  相似文献   

8.
为研究激光熔覆技术修复局部腐蚀钢板后修复件的力学性能,通过单轴拉伸试验研究了腐蚀方式、腐蚀界面处理方式、腐蚀深度以及激光熔覆扫描路径对修复件力学性能的影响规律,获得了局部腐蚀件和激光熔覆修复件的力-位移曲线以及力学性能折减系数。结果表明:通过激光熔覆技术修复的局部片腐蚀和局部点腐蚀钢板,其弹性模量、屈服强度和极限强度与完整件基本相当,极限伸长率可恢复到完整件的70%以上;柔化处理熔覆层侧面-基材界面或增加搭接区域可将修复件断裂位置从熔覆层侧面-基材界面转移到基材,进一步提升修复件力学性能;激光熔覆技术可修复不同腐蚀深度的腐蚀钢板,且修复件的力学性能对扫描路径不敏感。  相似文献   

9.
对损伤的TC11钛合金零部件进行激光熔覆沉积修复,可在不影响零件使用性能的前提下,节约贵重钛合金资源,提高零件利用率。分析修复后熔覆层和基材组织性能和开裂倾向是激光熔覆沉积修复工艺的基础研究工作。采用高斯热源,建立了单道单层激光熔覆应力预测三维数值模型,研究了激光熔覆基板的应力分布规律。随后,进一步实验研究了TC11激光熔覆区的显微组织结构。结果表明,激光熔覆区可分为熔覆层、热影响区和热应力层3部分。基板热应力层的晶粒受到应力的作用变形显著。激光熔覆后基板应力仿真和实验结果分布趋势一致,且最大热应力深度随激光功率的增大而增大。  相似文献   

10.
金属材料表面激光热处理的研究与应用   总被引:5,自引:0,他引:5  
从激光表面强化,激光熔覆、激光合金化及工程应用等4方面阐述了近年来金属材料表面激光热处理的研究与现状,提出其存在的问题与不足,并对其发展前景作了展望,提出了本课题研究内容及方向。  相似文献   

11.
肖强  吴钢 《科技信息》2013,(1):74-74,71
本文阐述了激光熔覆的相关理论,对熔覆层质量影响因素以及激光熔覆陶瓷涂层存在的主要问题及可采取的措施进行了分析,展望了激光熔覆陶瓷涂层技术在工业上的应用前景。  相似文献   

12.
激光熔覆技术在工业中的应用   总被引:14,自引:0,他引:14  
对激光熔覆的理论研究、工艺及其组织性能研究、应用研究三方面作一介绍,并指出今后的发展方向.  相似文献   

13.
目前激光熔覆快速成形技术普遍采用圆形、矩形或者线形光斑对熔覆粉末熔化并快速凝固,光斑和粉斑的耦合稳定性比较差。分析环形激光熔覆新工艺中工艺参数对成形零件显微组织的影响,不同工艺参数与熔覆层质量的关系,合理选择实验所得的工艺参数。  相似文献   

14.
激光增材再制造技术是基于激光熔覆、激光堆焊等激光沉积技术原理实现各种金属零部件损伤部位的几何尺寸或综合性能恢复的绿色制造新技术。针对激光增材再制造技术,本文具体阐述了增材再制造技术的国内外现状,并详细介绍了激光增材再制造的工艺类型以及在各行业的应用,最后展望了激光增材再制造技术的发展趋势。  相似文献   

15.
为了实现表面损伤叶轮的再制造,提出了叶轮激光熔覆增材再制造流程,并利用激光熔覆技术在叶轮材料试样表面进行Fe基粉末熔覆实验;叶轮再制造流程主要包括设备拆解、清洗、检测、再制造加工、零件测试、装配、喷涂包装等;激光熔覆实验表明粉末与基体产生了良好的冶金结合,组织致密且无未熔化粉末颗粒,熔覆层硬度达到625.7 HV,约为基体材料硬度的1.57倍,屈服强度为641 MPa;激光熔覆再制造叶轮经着色探伤检测和工业CT检测等显示再制造熔覆区域无裂纹、气孔等质量问题,采用去重式平衡,动不平衡量小于标准值750 g.mm,叶轮安装调试一次成功,各项指标满足要求。  相似文献   

16.
应用IPG-500激光器对45号钢进行了激光熔覆,研究了工艺参数对熔覆层形貌的影响,采用极差分析找出影响熔覆层形貌的关键因素.在此基础上,提出采用灰色关联度分析不同参数组合下的熔覆层质量与理想的熔覆层质量之间的关联度,从而找出最佳的激光熔覆工艺参数组合.结果表明,激光功率与扫描速度是影响熔覆层形貌的主要因素,并且在激光功率为400W,扫描速度为7mm/s及送粉速率为0.7r/min的条件下,所获得的熔覆层质量最优,为激光熔覆工艺参数的选择提供理论支持.  相似文献   

17.
焦雄  吴钢 《科技信息》2013,(1):223-224
由于激光熔覆技术的一些特点,熔覆处理后材料表面极易形成裂纹,成为激光熔覆技术工业化应用急需解决的问题。本文系统地描述了激光熔覆层裂纹的形成机理,归纳了熔覆层裂纹的影响因素,总结了目前抑制裂纹产生的主要措施,为防止裂纹的产生提供了理论与实践依据。  相似文献   

18.
9SiCr工具钢表面激光熔覆合金的组织与性能   总被引:1,自引:1,他引:1  
使用CO2激光器对9SiCr工具钢表面进行Co基和Ni基合金熔覆处理,X射线衍射仪、扫描电子显微镜分析了激光合金熔覆层的相组成和显微组织;显微硬度计对合金熔覆区的显微硬度进行测量·结果表明,合金熔覆层在微观结构上存在熔覆区、结合区和基体热影响3个区域·Co基合金熔覆区相组成为奥氏体+铁素体+碳化物,Ni基合金熔覆区相组成为奥氏体+铁素体+碳化物+金属间化合物·Ni基合金熔覆层的显微硬度约为Co基的2倍  相似文献   

19.
为了解决316L不锈钢激光熔覆层成形差、耐腐蚀性低的问题,采用显微组织观察、硬度实验、常温冲击及电化学测试等试验方法,对不同激光功率下熔覆单层及多层熔覆层的成形、组织及性能进行检测和分析。结果表明,随着激光功率的增大,熔覆层高度呈现先增加后减小的变化趋势,熔覆层内部析出相的含量以及稀释率则呈现上升趋势;激光功率过小易引起熔覆层开裂,过大则会引起熔覆层晶粒异常长大;随着激光功率的增加,熔覆层硬度呈增大趋势,当激光功率达到450 W时,熔覆层与基材结合界面处硬度值达到最大,为475 HV;而熔覆层的冲击性能和耐腐蚀性能则随着激光功率的增大呈现下降趋势,当激光功率为300 W时,其冲击韧性最大为92 J,且熔覆层具有最优的耐腐蚀性能,腐蚀电位Ecorr最高为-0.3 V,且腐蚀电流密度Icorr最小为0.165 A/cm2;因此,当熔覆速率为3 mm/s、送粉速率为14 g/min、搭接率为50%时,采用300 W激光功率制备的熔覆层可得到优异的冲击和耐腐蚀性能。研究结果可为316L激光熔覆层工艺调控及性能改善提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号