首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
设F是特征不为2,3,5的任意域。令M2(F)是F上2×2全矩阵空间,S2(F)是F上2×2对称矩阵空间,T1及T2分别表示S2(F)及M2(F)中所有立方幂等阵的集合。Φ(F)表示从S2(F)到M2(F)所有单射φ的集合且φ满足:A-λB∈T1φ(A)-λφ(B)∈T2.给出Φ(F)中φ的形式。在此基础上又得到了S2(F)到自身相应的映射形式。  相似文献   

2.
设F是一个特征2的域,n≥2,Mn(F)和Sn(F)分别为F上的n×n全矩阵空间与对称矩阵空间.刻画了Sn(F)到Mn(F)上的保矩阵M-P逆的线性单射,由此又得到了Sn(F)到自身的保矩阵M-P逆的可逆的线性算子的形式,最后还刻画了Mn(F)到自身的保M-P逆的线性算子.  相似文献   

3.
设F是特征不为2且元素个数大于3的域,n和m是正整数,令Sn(F)和Mn(F)分别是F上n×n对称矩阵空间和全矩阵空间,GLm(F)为F上m阶一般线性群,设f是从Sn(F)到Mm(F)上的线性映射,若f满足f(X)-1=f(X-1),X∈Sn(F)∩GLn(C),称f为保逆线性映射.刻画了从Sn(F)到Mm(F)以及从Sn(F)到Sm(F)上保逆线性映射.  相似文献   

4.
关于不同矩阵集合之间的保持问题是矩阵论研究中的一个热点问题,而上三角块阵集合到全矩阵集合以及块阵集合之间的保持问题的研究结果仍然不多.设R是有1交换的主理想整环,Mn(R)记R上的n阶全矩阵模,上三角块阵全体记为V为Mn(R)的子模,在一定条件下刻划从V到Mn(R),V到V的保幂等线性算子的形式,同时解决了保立方幂等及保群逆的相应问题.  相似文献   

5.
域上对称矩阵空间上的保逆线性映射   总被引:2,自引:1,他引:1  
设F是特征不为2或3的域,n和m是正整数,且n≤m.设Sn(F)为F上n阶对称矩阵空间,Mm(F)为F上m阶全矩阵空间,GLn(F)为F上n阶一般线性群.设f是从Sn(F)到Mm(F)上的线性映射,若f满足f(X)-1=f(X-1),X∈Sn(F)∩GLn(F),则称f为保逆线性映射,并将保逆线性映射的集合记为N-1(Sn(F),Mm(F)).分别刻画了从Sn(F)到Mm(F)和Sn(F)到Sm(F)上的线性映射.  相似文献   

6.
设Sm是复数域C上m×m对称矩阵全体,Pm是Sm中全体幂等矩阵构成的子集.主要刻画了保持对称矩阵张量积幂等的线性映射φ:Sm?Sn→Smn即A?B∈Pmn?φ(A?B)∈Pmn的形式.是对矩阵张量积空间上的线性保持问题的补充和发展.  相似文献   

7.
讨论2 X2对称矩阵空间S2到2×2全矩阵空间M2上保持立方幂等的映射形式.设φ:S2→M2,如果对任意矩阵A,B∈S2及数λ∈C有A-λB为立方幂等阵当且仅φ(A)-λφ(B)为立方幂等阵,则存在可逆阵P∈M2及数ε∈{1,-1}使得对任意的A∈S2有φ(A)=εPAP-1.  相似文献   

8.
设F是特征不为2的任意域,Mn(F)表示F上所有n×n矩阵所组成的空间.对任意A∈Mn(F),若存在λ∈F和幂等阵M∈Mn(F)使得A=λI+M,则称A为I-幂等矩阵.设φ:Mn(F)→Mn(F)为线性映射,若当A为I-幂等矩阵时,φ(A)也为I-幂等矩阵,则称φ保持I-幂等矩阵.刻画Mn(F)上保持I-幂等矩阵的线性...  相似文献   

9.
二阶特殊矩阵空间保幂等的映射   总被引:4,自引:2,他引:2  
设F1是特征不为2、3、5的域,F2是特征不为2的域,M2(F1)记F1上2×2全矩阵空间,S2(F1)记F1上2×2对称矩阵空间,T2(F2)是F2上2×2上三角矩阵空间.确定了从S2(F1)到M2(F1)以及从T2(F2)到T2(F2)保幂等的映射形式.  相似文献   

10.
设F1 是 特 征 不 为2、3、5的 域 ,F2是 特 征 不 为2的 域 ,M2(F1)记F1上2×2 全 矩 阵 空间,S2(F1)记F1上2×2 对称矩阵空间,T2(F2)是F2上2×2 上三角矩阵空间.确定了从S2(F1)到M2(F1)以及从T2(F2)到T2(F2)保幂等的映射形式.  相似文献   

11.
设H是一个复Hilbert空间,S(H)为H上对称算子全体所成的集合,用Γ表示S(H)中秩1算子全体所成的集合.设L是S(H)上的映射,如果L(Γ)Γ,则称L是保秩1的.S(H)上保秩1的弱连续线性映射被刻画.  相似文献   

12.
设F是一个域,Mn(F)是域F上的n×n矩阵空间,Sn(F)是Mn(F)中对称矩阵的全体.对Mn(F)中的任一线性子空间V,记IV为V中所有幂等元的集合.设V∈{Sn(F),Mn(F)},对任意的A,B∈V和λ∈F,如果A-λB幂等当且仅当Φ(A)-λΦ(B)幂等,则称映射Φ:V→V是保幂等性的.证明了:如果F的特征为0,Φ:Sn(F)→Sn(F),则Φ是一个保幂性映射当且仅当存在Mn(F)中的一个可逆阵P使得对Sn(F)中的每一个A都有Φ(A)=PAP-1,其中P满足PtP=aIn,a为F中的一个非零元.  相似文献   

13.
利用M-P逆得到了实幂等阵成为对称阵的几个等价条件,所得结果对于进一步研究M-P逆和对称阵是方便的.对于代数的深入教学有一定的意义.  相似文献   

14.
设F是一个元素个数大于2的域,S2(F)是F上的2×2对称矩阵空间.对任意的A,B ∈S2(F)和λ∈F,如果A-λB是对合当且仅当Ф(A)-λФ(B)是对合,则称映射Ф:S2(F)→S2(F)是保对合关系的.当F的特征不为2时刻画了Ф的形式.  相似文献   

15.
研究了反中心对称矩阵的迹、行列式、可逆性、伴随矩阵的性质.得到奇数阶反中心对称矩阵一定不可逆的结论,并给出偶数阶反中心对称矩阵可逆的充要条件和逆矩阵的形式.  相似文献   

16.
保矩阵群逆的线性算子   总被引:6,自引:2,他引:6  
近年来一些作者对线性保持问题给予了极大的关注,但研究在环上保群逆的文章尚很少,文献[5]给出了2是单位的环上矩阵保群逆的线性算子的刻划。补充了[5]的结果,令R是特征2的主理想整环,M_0(R)记R上n×n矩阵代数,刻划了在R上保M_n(R)中矩阵的群逆的线性算子的形式。  相似文献   

17.
F是任意的一个域,S2(F)表示F上2×2对称矩阵代数,刻画了S2(F)到自身满足f(A)f(B)=f(B)f(A)当且仅当AB=BA的加法满射f的形式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号