首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study is twofold: to explore, first, the influence of the intellectual and social conditions on the transfer of thermodynamics to chemistry and thereby the making of chemical thermodynamics, and second, the way that this knowledge was transferred from Europe to America. Consequently, it is of interest to examine the methodological approaches used by physicists and chemists to transfer thermodynamics to chemistry, to evaluate the potential of this science to offer solutions to existing chemical problems, and to discuss the attitude of the scientific community towards these new ideas. The development of chemical thermodynamics in America followed a different route compared to the European experience. Although it was transferred from Europe, it had distinctive characteristics imposed by a different traditional, intellectual and social milieu. This study focuses on the content of the transferred knowledge to America and the direction that this knowledge assumed by the American scientists. As a paradigm, the chemical thermodynamics of Gilbert Newton Lewis will be considered.  相似文献   

2.
This paper's aim is to explain the transition that occurred during the Early Modern period, from Principles of Nature to Laws of Nature. Natural Principles are taken to be innate to substances and arise from their natures, while Laws of Nature are external and imposed from without. The paper takes the view that to explain this transition, one needs to examine the history of philosophical theories of substantial action. It argues that during the late Middle Ages and in the Early Modern era, philosophers began to disentangle substantial actions from the nature of substances. This process of disentangling action eventually led to the concept of Laws of Nature, according to which laws compel a body to act in a certain way even though its nature does not.  相似文献   

3.
Surprisingly little attention has been given hitherto to the definition of the laboratory. A space has to be specially adapted to deserve that title. It would be easy to assume that the two leading experimental sciences, physics and chemistry, have historically depended in a similar way on access to a laboratory. But while chemistry, through its alchemical ancestry with batteries of stills, had many fully fledged laboratories by the seventeenth century, physics was discovering the value of mathematics. Even experimental physics was content to make use of almost any indoor space, if not outdoors, ignoring the possible value of a laboratory. The development of the physics laboratory had to wait until the nineteenth century.  相似文献   

4.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

5.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

6.
Molecular basis for differences between human joints   总被引:8,自引:0,他引:8  
The molecular program of a cell determines responses including induction or inhibition of genes for function and activity, and this is true of the cells within articular cartilage, a major functional component of the joint. While our studies have previously focussed on differences in the molecular programs of the cells within the superficial and deep zones, we have recently begun to focus on relative differences between joints, such as the knee and ankle. In the human, these joints vary greatly in their susceptibility to joint diseases, such as osteoarthritis (OA). We have predicted that there would be a molecular basis for differences between joints that could lead to differences in susceptibility to OA, if inherent pathways locked into the resident cells induce differences in their response to their environment. We have been able to show that there are differences between the matrix components and water content; these properties correspond to a higher equilibrium modulus and dynamic stiffness but lower hydraulic permeability and serve to make the ankle cartilage stiffer, slowing movement of molecules through the cartilage. In addition to these biochemical differences in the cartilage matrix, we have also identified relative differences in the strength of the response to stimulation of chondrocytes from knee and ankle. The stronger response of the knee chondrocytes includes factors that increase damage to the cartilage matrix, such as a depression of matrix synthesis and increased enzyme activity. This response by the knee chondrocytes results in enzyme damage to the matrix that the cells may not be able to repair, while the weaker response of the ankle chondrocytes may allow the cells to repair their matrix damage.  相似文献   

7.
I revisit an older defense of scientific realism, the methodological defense, a defense developed by both Popper and Feyerabend. The methodological defense of realism concerns the attitude of scientists, not philosophers of science. The methodological defense is as follows: a commitment to realism leads scientists to pursue the truth, which in turn is apt to put them in a better position to get at the truth. In contrast, anti-realists lack the tenacity required to develop a theory to its fullest. As a consequence, they are less likely to get at the truth.My aim is to show that the methodological defense is flawed. I argue that a commitment to realism does not always benefit science, and that there is reason to believe that a research community with both realists and anti-realists in it may be better suited to advancing science. A case study of the Copernican Revolution in astronomy supports this claim.  相似文献   

8.
The offspring of rats that voluntarily select larger quantities of alcohol are heavier consumers of alcohol than the offspring of rats that tend to avoid it. Such selective breeding, repeated over many generations, was used to develop the AA (Alko, Alcohol) line of rats which prefer 10% alcohol to water, and the ANA (Alko, Non-Alcohol) line of rats which choose water to the virtual exclusion of alcohol. In addition to demonstrating the likely role of genetic factors in alcohol consumption, these lines have been used to find behavioral, metabolic, and neurochemical correlates of differential alcohol intake. Some of the line differences that have been found involve the reinforcing effects of ethanol, the changes in consumption produced by alcohol deprivation and nutritional factors, the behavioral and adrenal monoamine reactions to mild stress, the development of tolerance, the accumulation of acetaldehyde during ethanol metabolism, and the brain levels of serotonin. It is hoped that these studies will lead to a better understanding of the genetically-determined mechanisms that influence the selection of alcohol.  相似文献   

9.
Existing scholarship on animal models tends to foreground either of the two major roles research organisms play in different epistemic contexts, treating their representational and instrumental roles separately. Based on an empirical case study, this article explores the changing relationship between the two epistemic roles of a research organism over the span of a decade, while the organism was used to achieve various knowledge ends. This rat model was originally intended as a replica of human susceptibility to cardiac arrest. In a fortunate stroke of serendipity, however, the experimenters detected the way mother-infant interactions regulated the pups’ resting cardiac rate. This intriguing outcome thus became the model’s new representational target and began driving the development of an experimental system. Henceforth, the model acquired an instrumental function, serving to detect and measure system-specific differences. Its subsequent development involved creating stimulus-response measures to explain and theorize those differences. It was this instrumental use of the model that pushed the experimenters into unchartered territory and conferred to the model an ability to adapt to varied epistemic contexts. Despite the prominence of this instrumental role, however, the model’s representational power continued to guide research. The model’s representational target was widened beyond heart rate to reflect other functional phenomena, such as behavioral activity and sleep/wake rhythm. The rat model was thus transformed from an experimental organism designed to instantiate cardiac regulation to a model organism taken to represent the development of a whole, intact animal under the regulatory influence of maternal care. This article examines this multifaceted transformation within the context of the salient shifts in modeling practice and variations in the model’s representational power. It thus explores how the relationship between the representational and instrumental uses of the model changed with respect to the varying exigencies of the investigative context, foregrounding its contextual versatility.  相似文献   

10.
It is well known that a linear combination of forecasts can outperform individual forecasts. The common practice, however, is to obtain a weighted average of forecasts, with the weights adding up to unity. This paper considers three alternative approaches to obtaining linear combinations. It is shown that the best method is to add a constant term and not to constrain the weights to add to unity. These methods are tested with data on forecasts of quarterly hog prices, both within and out of sample. It is demonstrated that the optimum method proposed here is superior to the common practice of letting the weights add up to one.  相似文献   

11.
Summary 12% of night nurses surveyed claimed to have suffered from a totally incapacitating paralysis that may be related to sleep paralysis, and contribute to impaired levels of safety on the night shift. The incidence of this paralysis is shown to be age-related, largely confined to the early hours of the morning, and to increase over consecutive night shifts.Acknowledgments. We wish to dedicate this paper to Professor Dr Günther Hildebrandt, Director of the Institut für Arbeitsphysiologie und Rehabilitationsforschung, University of Marburg/Lahn in honor of his 60th birthday. We also wish to thank the Nursing Officers and nurses concerned for their help in this study.  相似文献   

12.
Summary Many persons react to a kind of external agent by unconscious muscular reactions if they move across a place where this agent is supposed to be particularly active. Such places normally coincide with geological discontinuities, such as water veins, mineral ores. Practitioners of this art of detecting claim that the reaction patterns on different levels above ground are identical as vertical projections of the source pattern, this without perceptible attenuation. In some cases the supposed source was believed to have been found up to several hundred meters below ground surface. The statement of perpendicular propagation, which is the subject of this paper, is of prime importance for an approach towards understanding and all kinds of prospecting.Acknowledgments. The author expresses his gratitude to Hoffmann-La Roche for support of the project, particularly to Prof. Dr. A. Pletscher, to the operators Dr P. Treadwell (TR) and Mr Rupp (RU) for their indefatigable participation, and to the operator M. Aeberli (AE) as well as to all persons who contributed to this investigation.  相似文献   

13.
Selected mouse lines, alcohol and behavior   总被引:3,自引:0,他引:3  
The technique of selective breeding has been employed to develop a number of mouse lines differing in genetic sensitivity to specific effects of ethanol. Genetic animal models for sensitivity to the hypnotic, thermoregulatory, excitatory, and dependence-producing effects of alcohol have been developed. These genetic animal models have been utilized in numerous studies to assess the bases for those genetic differences, and to determine the specific neurochemical and neurophysiological bases for ethanol's actions. Work with these lines has challenged some long-held beliefs about ethanol's mechanisms of action. For example, lines genetically sensitive to one effect of ethanol are not necessarily sensitive to others, which demonstrates that no single set of genes modulates all ethanol effects. LS mice, selected for sensitivity to ethanol anesthesia, are not similarly sensitive to all anesthetic drugs, which demonstrates that all such drugs cannot have a common mechanism of action. On the other hand, WSP mice, genetically susceptible to the development of severe ethanol withdrawal, show a similar predisposition to diazepam and phenobarbital withdrawal, which suggests that there may be a common set of genes underlying drug dependencies. Studies with these models have also revealed important new directions for future mechanism-oriented research. Several studies implicate brain gamma-aminobutyric acid and dopamine systems as potentially important mediators of susceptibility to alcohol intoxication. The stability of the genetic animal models across laboratories and generations will continue to increase their power as analytic tools.  相似文献   

14.
In 1865 Francis Galton (1822-1911) published 'Hereditary Talent and Character', an elaborate attempt to prove the heritability of intelligence on the basis of pedigree data. It was the start of Galton's lifelong commitment to investigating the statistical patterns and physiological mechanisms of hereditary transmission. Most existing attempts to explain Galton's fascination for heredity have argued that he was driven by a commitment to conservative political ideologies to seek means of naturalizing human inequality. However, this paper shows that another factor of at least equal importance has been overlooked by Galton scholars: his determination during the 1860s to be accepted among the ranks of the Darwinian inner circle. By hitching his career to the fortunes of what looked likely to emerge as a new scientific elite, Galton felt that he could bypass the typically slow and uncertain route to achieving scientific distinction. For this essentially strategic reason, between 1860 and 1865 he drifted away from a set of existing scientific concerns that were failing to deliver the approbation that he desired. Earnestly seeking to ingratiate himself with the Darwinian lobby, he then toyed with a variety of potential research projects relevant to Darwinian evolution. Yet Galton consistently failed to stimulate the enthusiasm of the Darwinians. Finally, however, after several months of ruminating, in 1864 he settled on a study of eminent pedigrees as a subject that was both germane and highly useful to the Darwinian enterprise. Galton's willingness to shift the direction of his scientific career during the 1860s underscores the importance of examining the micro-politics of scientific careers in addition to their broader social and political context. This account also emphasizes the limitations of class-based explanations even when considering scientists whose work seems so manifestly indicative of ideological motivation.  相似文献   

15.
This essay explores an alternative pathway to Alzheimer’s dementia that focuses on damage to small blood vessels rather than late-stage toxic amyloid deposits as the primary pathogenic mechanism that leads to irreversible dementia. While the end-stage pathology of AD is well known, the pathogenic processes that lead to disease are often assumed to be due to toxic amyloid peptides that act on neurons, leading to neuronal dysfunction and eventually neuronal cell death. Speculations as to what initiates the pathogenic cascade have included toxic abeta peptide aggregates, oxidative damage, and inflammation, but none explain why neurons die. Recent high-resolution NMR studies of living patients show that lesions in white matter regions of the brain precede the appearance of amyloid deposits and are correlated with damaged small blood vessels. To appreciate the pathogenic potential of damaged small blood vessels in the brain, it is useful to consider the clinical course and the pathogenesis of CADASIL, a heritable arteriopathy that leads to damaged small blood vessels and irreversible dementia. CADASIL is strikingly similar to early onset AD in that it is caused by germ line mutations in NOTCH 3 that generate toxic protein aggregates similar to those attributed to mutant forms of the amyloid precursor protein and presenilin genes. Since NOTCH 3 mutants clearly damage small blood vessels of white matter regions of the brain that lead to dementia, we speculate that both forms of dementia may have a similar pathogenesis, which is to cause ischemic damage by blocking blood flow or by impeding the removal of toxic protein aggregates by retrograde vascular clearance mechanisms.  相似文献   

16.
众所周知,我国是造纸术的摇篮。造纸术的外传曾经一度起到促进世界文化发展的作用。然而,我国却经历了数百年的历程,机制纸才开始取代手工造纸,事实上,我国造纸工业是在中华人民共和国成立后,才开始阔步前进,并在1993年其纸和纸板总产量跃居世界主要产纸国家第三位。然而,人均消费量依然仅有36公斤,远远落后于世界平均水平的50公斤。为了促进我国造纸工业的现代化和健康发展,今后务必着眼于可持续纤维原料的开发和利用,认真执行清洁生产和质量第一的技术路线。这就意味着有必要在纤维原料中增加木材的份额。与此同时,又必须妥善处理工厂排污(特别是蒸煮废渣的处理),务使取得更好的环境保护效果。不言而喻,也就更有必要加强科研与开发工作,针对我国纤维原料的特点有所创新,并做到在实际生产中得到兑现。  相似文献   

17.
Plants often encounter unfavorable environmental conditions because of their sessile lifestyle. These adverse factors greatly affect the geographic distribution of plants, as well as their growth and productivity. Drought stress is one of the premier limitations to global agricultural production due to the complexity of the water-limiting environment and changing climate. Plants have evolved a series of mechanisms at the morphological, physiological, biochemical, cellular, and molecular levels to overcome water deficit or drought stress conditions. The drought resistance of plants can be divided into four basic types-drought avoidance, drought tolerance, drought escape, and drought recovery. Various drought-related traits, including root traits, leaf traits, osmotic adjustment capabilities, water potential, ABA content, and stability of the cell membrane, have been used as indicators to evaluate the drought resistance of plants. In the last decade, scientists have investigated the genetic and molecular mechanisms of drought resistance to enhance the drought resistance of various crops, and significant progress has been made with regard to drought avoidance and drought tolerance. With increasing knowledge to comprehensively decipher the complicated mechanisms of drought resistance in model plants, it still remains an enormous challenge to develop water-saving and drought-resistant crops to cope with the water shortage and increasing demand for food production in the future.  相似文献   

18.
Social environmental conditions, particularly the experience of social adversity, have long been connected with health and mortality in humans and other social mammals. Efforts to identify the physiological basis for these effects have historically focused on their neurological, endocrinological, and immunological consequences. Recently, this search has been extended to understanding the role of gene regulation in sensing, mediating, and determining susceptibility to social environmental variation. Studies in laboratory rodents, captive primates, and human populations have revealed correlations between social conditions and the regulation of a large number of genes, some of which are likely causal. Gene expression responses to the social environment are, in turn, mediated by a set of underlying regulatory mechanisms, of which epigenetic marks are the best studied to date. Importantly, a number of genes involved in the response to the social environment are also associated with susceptibility to other external stressors, as well as certain diseases. Hence, gene regulatory studies are a promising avenue for understanding, and potentially developing strategies to address, the effects of social adversity on health.  相似文献   

19.
Images, calculated from electron micrographs, show the three-dimensional structures of microtubules and tubulin sheets decorated stoichiometrically with motor protein molecules. Dimeric motor domains (heads) of kinesin and ncd, the kinesin-related protein that moves in the reverse direction, each appeared to bind to tubulin in the same way, by one of their two heads. The second heads show an interesting difference in position that seems to be related to the directions of movement of the two motors. X-ray crystallographic results showing the structures of kinesin and ncd to be very similar at atomic resolution, and homologous also to myosin, suggest that the two motor families may use mechanisms that have much in common. Nevertheless, myosins and kinesins differ kinetically. Also, whereas conformational changes in the myosin catalytic domain are amplified by a long lever arm that connects it to the stalk domain, kinesin and ncd do not appear to possess a structure with a similar function but may rely on biased diffusion in order to move along microtubules.  相似文献   

20.
The metaphysical commitment to the circle as the essential element in the analysis of celestial motion has long been recognized as the hallmark of classical astronomy. What has not always been clear, however, is that the circle continued to serve Kepler as a central element in his astronomy after the discovery of the elliptical orbit of Mars. Moreover, the circle also functioned for Kepler in geometry to select the basic polygons, in music to select the basic harmonies, and in astrology to select the basic aspects. His basic set of polygons consisted of those figures that could be constructed using only a compass and a rule; the set of fundamental harmonies consisted of the consonances of the just intonation; and the traditional set of astrological aspects were enlarged by Kepler to include three new aspects in order to make the astrological set consistent with geometry and music. And as the circle served to unify these three areas, so also did it serve to supply the fundamental answers to astronomical problems well after the discovery of his new astronomy—a topic to be discussed in Part II of this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号