首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
传统人脸识别方法手工设计特征过程复杂、识别率较低,对于开集人脸识别通用深度学习分类模型特征判别能力较弱。针对这两方面的不足,提出了一种以分类损失与中心损失相结合作为模型训练监督信号的深度卷积神经网络。首先,利用构建的应用场景数据集优调从公共数据集获得初始化参数的深度人脸识别模型,解决训练数据过小和数据分布差异问题,同时提高模型训练速度;然后,以传统损失函数和新的中心损失作为迁移学习过程中的监督信号,使得类内聚合、类间分散,提高模型输出人脸特征的判别能力;最后,对人脸特征进行主成分分析,进一步去除冗余特征,降低特征复杂度,提高人脸识别准确率。实验结果表明,与传统人脸识别算法相比该算法可以自动进行特征提取,并且相对于通用深度学习分类模型该算法通过度量学习使特征表示更具判别力。在自建测试集和LFW、YouTube Faces标准测试集上都取得了较高的识别率。  相似文献   

2.
基于主成分分析和Softmax回归模型的人脸识别方法   总被引:1,自引:0,他引:1  
文章介绍一种基于主成分分析(principal component analysis,PCA)和Softmax回归模型相结合的人脸识别方法,该方法通过PCA对整幅图像提取特征,然后将提取的特征经过非线性变换输入到Softmax回归模型中。将主成分提取特征看成是单层神经网络,将它与Softmax回归模型构成的级联结构看作是2层神经网络,在神经网络的训练过程中,主成分的特征向量可以微调。在不同人脸数据库上的实验表明,相比于传统的只用PCA降维的方法,本文方法可达到较高的识别率。  相似文献   

3.
小规模数据人脸识别的难点在于数据量少而变化多,直接用深度神经网络进行训练易出现过拟合现象.针对此问题,本文提出了基于联合损失函数的小规模数据人脸识别算法,即利用联合损失函数,在基于Softmax损失函数的大规模公开人脸数据集上得到的预训练模型上重新训练.该方法既能充分使用模型参数,也能够提高模型的特征表征能力.除此之外,本文中还使用了传统特征后处理方法进行对比评估,证明了该方法在小规模人脸数据集上的有效性.实验表明,本文方法能大幅度提高模型在学校新生人脸数据集的检索精度.  相似文献   

4.
针对Softmax(柔性最大值)损失对特征只有可分性的不足,提出一种基于深度卷积神经网络的判别性人脸识别算法.该算法首先根据Softmax损失特征分布,在特征和权重向量间施加一个类内余弦相似性损失,使类内更加紧凑,类间尽可能分离;然后在Softmax损失基础上通过归一化特征来更好地模拟低质量人脸图像,并通过归一化权重来减轻类别不平衡,使与测试时的余弦相似性度量一致;最后联合归一化的Softmax损失和类内余弦相似性损失在预训练模型上进行微调.该算法在人脸识别基准测试集LFW(户外人脸标记)和YTF(You Tube人脸数据库)上分别取得了98.72%和93.38%的识别率,实验结果表明:在大规模人脸身份识别中,该算法提高了特征的判别性,增强了模型的泛化能力,能有效提高人脸识别率.  相似文献   

5.
6.
在统计判决理论的框架下,针对一类特定目标人脸识别中存在的问题,提出了基于Stein损失的BP神经网络分类方法,证明了Stein损失下的BP神经网络的收敛性,经过剑桥大学ORL人脸库的图像识别实验,表明这种方法能有效解决传统的BP神经网络特定目标人脸识别中存在的问题.  相似文献   

7.
针对一类特定目标人脸识别中存在的问题,提出一种基于Linex损失下BP神经网络的分类方法,并给出了剑桥大学ORL人脸库上的测试结果.实验结果表明,所提出的方法能有效解决传统BP神经网络特定目标人脸识别中存在的问题.  相似文献   

8.
9.
人脸识别是近几年深度学习的典型代表,Tensorflow这个深度学习平台通过卷积神经网络能够有效的学习和训练进而达到识别人脸,系统采用OpenCV中的Haar-like人脸识别分类器由OpenCV和Tensorflow相互结合搭建。能有效的捕捉人脸,并通过深度学习对人脸进行分类。  相似文献   

10.
提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的多姿态人脸识别方法。利用该方法可以将输入的人脸投影到高维特征空间并输出具备姿态鲁棒性的人脸特征,从而进行精确的多姿态人脸识别。经过大量的实验验证,该模型在多个数据集上取得了良好效果。与传统的单路CNN网络层次结构不同,本文方法采用双路CNN网络层次结构并结合度量学习来优化传统的CNN模型。最后,使用Tensorflow深度学习框架进行实验,实验结果表明,该框架的识别准确率比目前几种常用的多姿态人脸识别算法的识别准确率更高。  相似文献   

11.
人脸检测与识别方法研究   总被引:1,自引:0,他引:1  
人脸图像处理包括人脸检测、人脸识别等.分析了有关人脸检测问题的研究方法并对其进行了分类和评价,重点介绍了人脸自动识别这一领域的研究方法并对其进行了简要分析评价,最后提出了人脸图像处理领域的研究展望.  相似文献   

12.
人脸检测与识别技术综述   总被引:10,自引:2,他引:10  
人脸的检测与识别技术因其巨大的应用价值及市场潜力,引起各方面的关注,已经成为图像工程和模式识别领域的研究热点。文章在回顾人脸检测与识别技术发展历程的基础上,对人脸检测与识别的多种相关技术作了介绍与评论,并讨论了该技术的最新发展方向及其国内的发展情况。  相似文献   

13.
随着社会信息化、网络化的发展,自动身份认证逐渐成为一种趋势,人脸识别以其特有的便利性成为当前研究的热点.在学习前人的图像处理技术基础上,综合考虑各方面条件,在算法上采用人脸识别领域中的HAAR方法对人脸进行检测,采用PCA方法进行人脸特征提取;在图像显示上采用JavaWeb开发的SSH框架对图像进行处理,将C++图像处理的便利条件和Java Web开发的友好效果结合起来.最终实现的功能是:从人脸图像库中找出与上传人脸最相似的前三个人脸图片,并显示他们的信息.  相似文献   

14.
现有流形学习算法在学习人脸数据时,假设所有数据点位于单一低维嵌入流形之上,当数据点实际分布在不同的流形上时,单流形假设就会影响数据真实空间结构。为此提出一种基于多邻域保持嵌入(multiple neighborhood preserving embedding,M-NPE)的学习算法来发现不同类别数据在不同维度的低维嵌入空间中分布的多流形结构。首先,单独学习不同类别数据的流形,得到反映其本质特征的流形;再通过遗传算法搜索每个流形的最优维数;最后依据最小重构误差分类器对样本分类。在Extended Yale B和CMU PIE这2个大型人脸库上实验结果验证了该算法的有效性。  相似文献   

15.
基于人脸和人耳的多模态生物特征识别   总被引:1,自引:1,他引:1  
单一模式生物特征识别系统由于存在一些固有的局限性,有时难以满足实际应用的需求,本文提出了基于正面人脸和人耳信息融合的多模态生物特征识别方法.针对USTB人耳图像库和ORL人脸图像库,利用核Fisher鉴别分析方法分别进行了人耳识别、人脸识别和人脸人耳融合识别,融合策略包括图像层融合和特征层融合两种.识别结果表明基于人脸人耳信息融合的多模态识别的识别率优于单体的人耳或人脸识别.这说明融合多种生物特征的多模态识别可以提高身份认证的准确率,也为实现非打扰式识别提供了一种新的途径.  相似文献   

16.
为了方便观众更好地在观看比赛直播和录像时理解裁判手势的含义,或帮助录像分析师分析比赛视频,设计了一种实时篮球裁判手势检测与识别系统Yolov5-BR(Yolov5-Basketball Referee).首先,采用目标检测中的Yolov5算法为基础模型,对其边界框的交并比(intersection over union,IoU)损失函数完全交并比(complete intersection over union,CIoU)进行加权处理,增强预测框的鲁棒性;其次,在C3模块后加入注意力机制,产生更具分辨性的特征表示,从而提升网络识别性能;此外,在检测层头部融入自适应特征融合机制,充分利用图像高层语义信息;最后,对目标置信度损失函数进行不对等加权处理,从而提高对小目标检测的鲁棒性.在自制的裁判手势数据集上,Yolov5-BR取得了95.4%的mAP值,本地视频检测速率为55.5帧/s,外接摄像头分辨率为1 280×960,检测速率为25帧/s.实验结果表明,Yolov5-BR相对于原始模型在检测裁判手势的性能上有所提升,保持了较高的准确率、稳定性与实时性.  相似文献   

17.
对称性在人脸识别中的应用:对称Fisherface   总被引:2,自引:0,他引:2  
充分考虑到人脸对称性,结合对称主量分析和Fisher线性判别,提出了改进的Fisherfaee方法--对称Fisherface(SFisherface).在人脸的表情、姿态以及光照发生变化的情况下,通过实验说明了SFisherfaca在性能上面的优势.通过比较镜像扩展样本后的Fisherface、SFisherface和经典Fisherface方法的联系和区别,说明了SFishefface有助于提取稳定性的特征,并能够显著提高识别率.  相似文献   

18.
人脸识别技术(FRT)是当今模式识别和人工智能领域的一个重要研究方向.虽然人脸识别的研究已有很长的历史,各种人脸识别的技术也很多,但由于人脸属于复杂模式而且容易受表情、肤色和衣着的影响,目前还没有一种人脸识别技术是公认快速有效的.本文主要讨论了人脸识别技术的一些常用方法,对现有的人脸检测与定位、人脸特征提取、人脸识别的方法进行分析和讨论,最后对人脸识别未来的发展和应用做了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号