首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
传统人脸识别方法手工设计特征过程复杂、识别率较低,对于开集人脸识别通用深度学习分类模型特征判别能力较弱。针对这两方面的不足,提出了一种以分类损失与中心损失相结合作为模型训练监督信号的深度卷积神经网络。首先,利用构建的应用场景数据集优调从公共数据集获得初始化参数的深度人脸识别模型,解决训练数据过小和数据分布差异问题,同时提高模型训练速度;然后,以传统损失函数和新的中心损失作为迁移学习过程中的监督信号,使得类内聚合、类间分散,提高模型输出人脸特征的判别能力;最后,对人脸特征进行主成分分析,进一步去除冗余特征,降低特征复杂度,提高人脸识别准确率。实验结果表明,与传统人脸识别算法相比该算法可以自动进行特征提取,并且相对于通用深度学习分类模型该算法通过度量学习使特征表示更具判别力。在自建测试集和LFW、YouTube Faces标准测试集上都取得了较高的识别率。  相似文献   

2.
基于主成分分析和Softmax回归模型的人脸识别方法   总被引:1,自引:0,他引:1  
文章介绍一种基于主成分分析(principal component analysis,PCA)和Softmax回归模型相结合的人脸识别方法,该方法通过PCA对整幅图像提取特征,然后将提取的特征经过非线性变换输入到Softmax回归模型中。将主成分提取特征看成是单层神经网络,将它与Softmax回归模型构成的级联结构看作是2层神经网络,在神经网络的训练过程中,主成分的特征向量可以微调。在不同人脸数据库上的实验表明,相比于传统的只用PCA降维的方法,本文方法可达到较高的识别率。  相似文献   

3.
小规模数据人脸识别的难点在于数据量少而变化多,直接用深度神经网络进行训练易出现过拟合现象.针对此问题,本文提出了基于联合损失函数的小规模数据人脸识别算法,即利用联合损失函数,在基于Softmax损失函数的大规模公开人脸数据集上得到的预训练模型上重新训练.该方法既能充分使用模型参数,也能够提高模型的特征表征能力.除此之外,本文中还使用了传统特征后处理方法进行对比评估,证明了该方法在小规模人脸数据集上的有效性.实验表明,本文方法能大幅度提高模型在学校新生人脸数据集的检索精度.  相似文献   

4.
针对Softmax(柔性最大值)损失对特征只有可分性的不足,提出一种基于深度卷积神经网络的判别性人脸识别算法.该算法首先根据Softmax损失特征分布,在特征和权重向量间施加一个类内余弦相似性损失,使类内更加紧凑,类间尽可能分离;然后在Softmax损失基础上通过归一化特征来更好地模拟低质量人脸图像,并通过归一化权重来减轻类别不平衡,使与测试时的余弦相似性度量一致;最后联合归一化的Softmax损失和类内余弦相似性损失在预训练模型上进行微调.该算法在人脸识别基准测试集LFW(户外人脸标记)和YTF(You Tube人脸数据库)上分别取得了98.72%和93.38%的识别率,实验结果表明:在大规模人脸身份识别中,该算法提高了特征的判别性,增强了模型的泛化能力,能有效提高人脸识别率.  相似文献   

5.
6.
在统计判决理论的框架下,针对一类特定目标人脸识别中存在的问题,提出了基于Stein损失的BP神经网络分类方法,证明了Stein损失下的BP神经网络的收敛性,经过剑桥大学ORL人脸库的图像识别实验,表明这种方法能有效解决传统的BP神经网络特定目标人脸识别中存在的问题.  相似文献   

7.
针对一类特定目标人脸识别中存在的问题,提出一种基于Linex损失下BP神经网络的分类方法,并给出了剑桥大学ORL人脸库上的测试结果.实验结果表明,所提出的方法能有效解决传统BP神经网络特定目标人脸识别中存在的问题.  相似文献   

8.
9.
深度学习是目前人工智能领域中的新兴分支之一,利用这一技术可以让人脸识别技术的准确性得到提高,进一步提高信息安全保障.基于此,本文针对基于深度学习的人脸识别技术进行分析,在简单了解基础模型和训练集的基础上,从人脸预处理和特征融合入手,最终建立形成基于深度多模型融合的人脸识别.  相似文献   

10.
人脸识别是近几年深度学习的典型代表,Tensorflow这个深度学习平台通过卷积神经网络能够有效的学习和训练进而达到识别人脸,系统采用OpenCV中的Haar-like人脸识别分类器由OpenCV和Tensorflow相互结合搭建。能有效的捕捉人脸,并通过深度学习对人脸进行分类。  相似文献   

11.
目的 针对传统优化算法在训练深度学习模型时,由于模型参数量不断增大,网络层数不断加深所产生的训练效率较低的问题,提出一种基于 Nesterov 加速的 Nadabelief 优化算法,以提高模型的训练效率。 方法 首先采取Adabelief 算法代替 Adam 算法,缓解了算法的泛化性问题;接着从一阶矩经典动量项的角度出发,在 Adabelief 算法的基础上引入了 Nesterov 动量加速机制,在梯度更新时不仅考虑当前时刻的梯度,还借助于历史累积梯度来修正梯度的更新幅度,进一步提升了算法的效率;最后根据理论分析证明得到算法的遗憾界,确保了算法的收敛性。 结果 为了验证算法的性能,在凸情况下进行了 Logistic 回归实验,在非凸情况下进行了图像分类和语言建模实验,通过与 Adam、Adabelief 等算法的比较,验证了 Nadabelief 算法的优越性。 通过在不同初始学习率下对算法进行测试,验证了算法良好的鲁棒性。 结论 实验表明:所提出的算法在保持原有 Adabelief 算法泛化能力的同时兼具更好的收敛精度,在训练深度学习模型时效率得到了进一步提高。  相似文献   

12.
目前的人脸特征匹配算法大多关注于单图像与单图像的匹配而不能有效利用图像序列之间的相关信息,因而提出了一种基于深度学习与约束稀疏表达的人脸特征匹配算法.通过CNN网络对人脸图像进行特征提取,并利用改进的稀疏表达方法自动选取相似的图像序列进行特征匹配,有效地利用了图像序列之间的相关信息.实验结果表明,该算法在LFW和AR数据库上取得了很好的效果并优于传统的SRC,L1-norm和CRC-RLS算法.   相似文献   

13.
由于人类个体面部形态各种各样,使得不同人在表达同一感情时有可能产生较大的视觉差异,为了减弱这种内类视觉差异性对人脸表情识别产生的影响,该文提出一种分层多任务学习的人脸表情识别方法,该方法以现有深度卷积神经网络模型为基础,构造双层树分类器以替换输出层的平面softmax分类器,构建深度多任务学习框架,通过利用人脸表情标签和人脸标签共同学习更具辨识力的深度特征,将知识从相关人脸识别任务中迁移过来,从而减弱面部形态对表情识别的影响,提高表情识别性能。实验结果表明,相较于VGGnet,Googlenet和Resnet深度模型,文中提出的方法均提高了人脸表情识别率,且成功推广到面瘫表情识别问题中。  相似文献   

14.
在人脸识别系统中,深度学习由于强大的表征能力被广泛应用,但模型推理的高计算复杂度和特征表示的高维度分别降低了特征提取和特征检索的效率,阻碍了人脸识别系统的实际部署.为了克服这两个问题,本文提出一种基于深度特征蒸馏的人脸识别方法,该方法通过多任务学习实现大深度模型知识与领域相关数据信息的蒸馏,从而统一地压缩深度网络参数及特征维度.联合特征回归与人脸分类,以预训练的大网络为教师网络,指导小网络训练,将知识迁移得到轻量级的学生网络,实现了高效的特征提取.在LFW人脸识别数据集上进行了实验,学生模型在识别精度相比教师模型下降3.7%的情况下,模型参数压缩到约2×107、特征维度降到128维,相比教师模型分别获得了7.1倍的参数约减、32倍的特征降维及95.1%的推理复杂度下降,表明了方法的有效性和高效性.  相似文献   

15.
人脸口罩佩戴识别成为疫情防控的一项重要手段,而目前口罩佩戴检测主要还是通过人工监测,基于深度学习的口罩佩戴检测系统较少,且存在误检、漏检和检测速度慢等问题。针对口罩佩戴检测中不规范佩戴口罩数据集较少,和对检测精度和检测速度要求较高的实际应用需求,从数据集和网络两方面改进人脸口罩佩戴检测方法:通过在无监督自分类方法中引入标签矫正算法对数据集进行子类划分,减少数据集类内差异,提高网络检测精度;调整目标检测网络结构,去除小尺度检测的网络层,提高网络检测速度;引入注意力机制模块,增强网络对细节特征的提取能力,提高网络检测精度。口罩佩戴情况的平均检测精度从79.34%提升到93.12%,检测速度提高了6.4%,设计的网络结构能够满足实际应用的需求。  相似文献   

16.
局部匹配的人脸识别方法   总被引:1,自引:1,他引:0  
从人类认知方式出发,提出了一种基于统计学习的局部匹配人脸识别方法。该方法将人脸图像划分成若干小块,各个子块中包含不同的人脸形状特征,而不同的子块则描述了人脸主要部件之间的相对位置关系,然后根据各个子块鉴别能力的差异,将每个子块看成一弱分类器,利用Adaboost学习算法组成一个强分类器,提高最终的分类效果。实验结果表明该方法可以有效提高人脸的识别准确率并对人脸的表情和光照具有较好的鲁棒性。  相似文献   

17.
机器学习与人脸识别方法概述   总被引:1,自引:0,他引:1  
对机器学习与人脸识别的基本含义和主要方法进行了概述.提出融合人脸的多种生物特征,改进现有的机器学习算法,并进一步推进机器学习方法在人脸识别中的应用,将十分有利于人脸识别精度的改善和人脸识别速度的提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号