首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
 组蛋白修饰作为重要的表观遗传修饰,在调控胚胎基因表达、胚胎细胞的命运决定及胚胎基因组的稳定性等方面均起了很重要的作用。微量测序技术的发展使从全基因组水平上检测植入前胚胎的组蛋白修饰成为可能。综述了近年来利用该技术对小鼠早期胚胎发育过程中的组蛋白甲基化修饰研究的最新进展,总结了在胚胎基因激活及第一次细胞分化过程中组蛋白H3K4me3和H3K27me3修饰不同的建立和动态变化趋势,这些研究为探索胚胎发育和细胞分化的表观调控机制奠定了基础。  相似文献   

2.
Seligson DB  Horvath S  Shi T  Yu H  Tze S  Grunstein M  Kurdistani SK 《Nature》2005,435(7046):1262-1266
Aberrations in post-translational modifications of histones have been shown to occur in cancer cells but only at individual promoters; they have not been related to clinical outcome. Other than being targeted to promoters, modifications of histones, such as acetylation and methylation of lysine and arginine residues, also occur over large regions of chromatin including coding regions and non-promoter sequences, which are referred to as global histone modifications. Here we show that changes in global levels of individual histone modifications are also associated with cancer and that these changes are predictive of clinical outcome. Through immunohistochemical staining of primary prostatectomy tissue samples, we determined the percentage of cells that stained for the histone acetylation and dimethylation of five residues in histones H3 and H4. Grouping of samples with similar patterns of modifications identified two disease subtypes with distinct risks of tumour recurrence in patients with low-grade prostate cancer. These histone modification patterns were predictors of outcome independently of tumour stage, preoperative prostate-specific antigen levels, and capsule invasion. Thus, widespread changes in specific histone modifications indicate previously undescribed molecular heterogeneity in prostate cancer and might underlie the broad range of clinical behaviour in cancer patients.  相似文献   

3.
为了研究新型冠状病毒膜蛋白(SARS-CoV-2 M蛋白)结构及性质.基于生物信息学分析M蛋白质基因结构、二级结构和三级结构、翻译后的修饰和进化历程.结果表明,M蛋白为疏水性蛋白,其基因编码区长度为669bp,编码222个氨基酸;M蛋白启动子区内不存在甲基化位点,存在17潜在的转录因子结合位点;其二级结构以无规则卷曲和...  相似文献   

4.
蛋白质磷酸化修饰研究进展   总被引:1,自引:0,他引:1  
 蛋白质磷酸化是由蛋白质激酶催化的磷酸基转移反应,是最常见、最重要的蛋白质翻译后修饰方式之一,是一种普遍的生命活动调节方式,在细胞信号转导过程中起重要作用。本文介绍了蛋白质磷酸化修饰的主要类型与功能、磷酸化蛋白的鉴定及磷酸化位点的预测等方面研究进展,并着重介绍了一些灵敏度高、特异性强的以同位素标记、免疫印迹-化学发光法等作为核心的磷酸化蛋白质分析方案。Western blot方法被证明是鉴别磷蛋白的灵敏、特异方法,而NanoPro100/1000超微量蛋白分析系统等又在此基础上加以改善。蛋白磷酸化分析工具和软件的发展也很迅猛。  相似文献   

5.
The complex language of chromatin regulation during transcription   总被引:2,自引:0,他引:2  
Berger SL 《Nature》2007,447(7143):407-412
  相似文献   

6.
Bader B  Kuhn K  Owen DJ  Waldmann H  Wittinghofer A  Kuhlmann J 《Nature》2000,403(6766):223-226
Biological membranes define the boundaries of the cellular compartments in higher eukaryotes and are active in many processes such as signal transduction and vesicular transport. Although post-translational lipid modification of numerous proteins in signal transduction is crucial for biological function, analysis of protein-protein interactions has mainly focused on recombinant proteins in solution under defined in vitro conditions. Here we present a new strategy for the synthesis of such lipid-modified proteins. It involves the bacterial expression of a carboxy-terminally truncated non-lipidated protein, the chemical synthesis of differently lipidated peptides representing the C terminus of the proteins, and their covalent coupling. Our technique is demonstrated using Ras constructs, which exhibit properties very similar to fully processed Ras, but can be produced in high yields and are open for selective modifications. These constructs are operative in biophysical and cellular assay systems, showing specific recognition of effectors by Ras lipoproteins inserted into the membrane surface of biosensors and transforming activity of oncogenic variants after microinjection into cultured cells.  相似文献   

7.
8.
Lin YY  Kiihl S  Suhail Y  Liu SY  Chou YH  Kuang Z  Lu JY  Khor CN  Lin CL  Bader JS  Irizarry R  Boeke JD 《Nature》2012,482(7384):251-255
First identified as histone-modifying proteins, lysine acetyltransferases (KATs) and deacetylases (KDACs) antagonize each other through modification of the side chains of lysine residues in histone proteins. Acetylation of many non-histone proteins involved in chromatin, metabolism or cytoskeleton regulation were further identified in eukaryotic organisms, but the corresponding enzymes and substrate-specific functions of the modifications are unclear. Moreover, mechanisms underlying functional specificity of individual KDACs remain enigmatic, and the substrate spectra of each KDAC lack comprehensive definition. Here we dissect the functional specificity of 12 critical human KDACs using a genome-wide synthetic lethality screen in cultured human cells. The genetic interaction profiles revealed enzyme-substrate relationships between individual KDACs and many important substrates governing a wide array of biological processes including metabolism, development and cell cycle progression. We further confirmed that acetylation and deacetylation of the catalytic subunit of the adenosine monophosphate-activated protein kinase (AMPK), a critical cellular energy-sensing protein kinase complex, is controlled by the opposing catalytic activities of HDAC1 and p300. Deacetylation of AMPK enhances physical interaction with the upstream kinase LKB1, leading to AMPK phosphorylation and activation, and resulting in lipid breakdown in human liver cells. These findings provide new insights into previously underappreciated metabolic regulatory roles of HDAC1 in coordinating nutrient availability and cellular responses upstream of AMPK, and demonstrate the importance of high-throughput genetic interaction profiling to elucidate functional specificity and critical substrates of individual human KDACs potentially valuable for therapeutic applications.  相似文献   

9.
Reversing histone methylation   总被引:1,自引:0,他引:1  
Bannister AJ  Kouzarides T 《Nature》2005,436(7054):1103-1106
Histones package DNA, and post-translational modifications of histones can regulate access to DNA. Until recently, histone methylation-unlike all other histone modifications-was considered a permanent mark. The discovery of enzymes that reverse the methylation of lysines and arginines challenges our current thinking on the unique nature of histone methylation, and substantially increases the complexity of histone modification pathways.  相似文献   

10.
Using cDNA microarray hybridization from a human testicular cDNA library, one gene exhibiting ten-fold difference at expression level between adult and embryo human testes was cloned and named NYD-SP9, which was believed to be involved in spermatogenesis. Southern blot hybridization results showed that NYD-SP9 expressed highly in testis but low in ovary. Protein motif analysis of this cDNA sequence revealed a cluster of phosphorylation sites, indicating its potential involvement in signal pathways during spermatogenesis. Furthermore, one transmembrane helix was predicted in N-terminal region, indicating that putative NYD-SP6 may be served as a transmembrane protein. The proximity of these potential phosphorylation sites to each other indicates that there may be interaction among these sites to regulate spermatogenesis. These findings suggested that protein kinase NYD-SP9 might play a role in male germ cell differentiation.  相似文献   

11.
Regulation of p53 activity through lysine methylation   总被引:1,自引:0,他引:1  
p53 is a tumour suppressor that regulates the cellular response to genotoxic stresses. p53 is a short-lived protein and its activity is regulated mostly by stabilization via different post-translational modifications. Here we report a novel mechanism of p53 regulation through lysine methylation by Set9 methyltransferase. Set9 specifically methylates p53 at one residue within the carboxyl-terminus regulatory region. Methylated p53 is restricted to the nucleus and the modification positively affects its stability. Set9 regulates the expression of p53 target genes in a manner dependent on the p53-methylation site. The crystal structure of a ternary complex of Set9 with a p53 peptide and the cofactor product S-adenosyl-l-homocysteine (AdoHcy) provides the molecular basis for recognition of p53 by this lysine methyltransferase.  相似文献   

12.
Lizak C  Gerber S  Numao S  Aebi M  Locher KP 《Nature》2011,474(7351):350-355
Asparagine-linked glycosylation is a post-translational modification of proteins containing the conserved sequence motif Asn-X-Ser/Thr. The attachment of oligosaccharides is implicated in diverse processes such as protein folding and quality control, organism development or host-pathogen interactions. The reaction is catalysed by oligosaccharyltransferase (OST), a membrane protein complex located in the endoplasmic reticulum. The central, catalytic enzyme of OST is the STT3 subunit, which has homologues in bacteria and archaea. Here we report the X-ray structure of a bacterial OST, the PglB protein of Campylobacter lari, in complex with an acceptor peptide. The structure defines the fold of STT3 proteins and provides insight into glycosylation sequon recognition and amide nitrogen activation, both of which are prerequisites for the formation of the N-glycosidic linkage. We also identified and validated catalytically important, acidic amino acid residues. Our results provide the molecular basis for understanding the mechanism of N-linked glycosylation.  相似文献   

13.
Epigenetic inheritance in plants   总被引:7,自引:0,他引:7  
Henderson IR  Jacobsen SE 《Nature》2007,447(7143):418-424
The function of plant genomes depends on chromatin marks such as the methylation of DNA and the post-translational modification of histones. Techniques for studying model plants such as Arabidopsis thaliana have enabled researchers to begin to uncover the pathways that establish and maintain chromatin modifications, and genomic studies are allowing the mapping of modifications such as DNA methylation on a genome-wide scale. Small RNAs seem to be important in determining the distribution of chromatin modifications, and RNA might also underlie the complex epigenetic interactions that occur between homologous sequences. Plants use these epigenetic silencing mechanisms extensively to control development and parent-of-origin imprinted gene expression.  相似文献   

14.
McGinty RK  Kim J  Chatterjee C  Roeder RG  Muir TW 《Nature》2008,453(7196):812-816
Numerous post-translational modifications of histones have been described in organisms ranging from yeast to humans. Growing evidence for dynamic regulation of these modifications, position- and modification-specific protein interactions, and biochemical crosstalk between modifications has strengthened the 'histone code' hypothesis, in which histone modifications are integral to choreographing the expression of the genome. One such modification, ubiquitylation of histone H2B (uH2B) on lysine 120 (K120) in humans, and lysine 123 in yeast, has been correlated with enhanced methylation of lysine 79 (K79) of histone H3 (refs 5-8), by K79-specific methyltransferase Dot1 (KMT4). However, the specific function of uH2B in this crosstalk pathway is not understood. Here we demonstrate, using chemically ubiquitylated H2B, a direct stimulation of hDot1L-mediated intranucleosomal methylation of H3 K79. Two traceless orthogonal expressed protein ligation (EPL) reactions were used to ubiquitylate H2B site-specifically. This strategy, using a photolytic ligation auxiliary and a desulphurization reaction, should be generally applicable to the chemical ubiquitylation of other proteins. Reconstitution of our uH2B into chemically defined nucleosomes, followed by biochemical analysis, revealed that uH2B directly activates methylation of H3 K79 by hDot1L. This effect is mediated through the catalytic domain of hDot1L, most likely through allosteric mechanisms. Furthermore, asymmetric incorporation of uH2B into dinucleosomes showed that the enhancement of methylation was limited to nucleosomes bearing uH2B. This work demonstrates a direct biochemical crosstalk between two modifications on separate histone proteins within a nucleosome.  相似文献   

15.
16.
The tumour suppressor p53 induces cellular senescence in response to oncogenic signals. p53 activity is modulated by protein stability and post-translational modification, including phosphorylation and acetylation. The mechanism of p53 activation by oncogenes remains largely unknown. Here we report that the tumour suppressor PML regulates the p53 response to oncogenic signals. We found that oncogenic Ras upregulates PML expression, and overexpression of PML induces senescence in a p53-dependent manner. p53 is acetylated at lysine 382 upon Ras expression, an event that is essential for its biological function. Ras induces re-localization of p53 and the CBP acetyltransferase within the PML nuclear bodies and induces the formation of a trimeric p53-PML-CBP complex. Lastly, Ras-induced p53 acetylation, p53-CBP complex stabilization and senescence are lost in PML-/- fibroblasts. Our data establish a link between PML and p53 and indicate that integrity of the PML bodies is required for p53 acetylation and senescence upon oncogene expression.  相似文献   

17.
使用生物信息学的方法,分析武汉地区不同基因型、亚型的丙肝病毒的包膜E1蛋白,预测其二级结构、核苷酸变异性、糖基化位点、亲水性、跨膜区、信号肽、蛋白修饰位点、B细胞抗原.结果显示各HCV的包膜E1蛋白二级结构差距不大;序列始末段有数个氨基酸残基的差距,序列上存在高变异位点,基因型2a的型内一致性最高;序列大量糖基化,有多个糖基化基化位点;序列分布着亲水性区域,基因型1b的分值很高;基因型1b、6a、3b、3a多数亚型有1个跨膜区,基因型2a多数亚型有两个跨膜区;基因型1b、6a、3b、3a无信号肽,基因型2a都有信号肽;蛋白序列上存在多个不同修饰位点和B细胞抗原,各基因型、亚型之间有明显差距,具有较大异质性.该研究为揭示病毒感染机制和研制地区性疫苗提供一定的科学依据.  相似文献   

18.
酪氨酸激酶Btk是非受体酪氨酸家族的成员,它由PH结构域、TH结构域、SH3结构域、SH2结构域和催化结构域5部分组成.Btk参与多种信号通路,对细胞的增殖、分化和凋亡起着重要的调控作用.Btk的突变可导致X连锁无丙种球蛋白血症,一直以来都是研究热点.笔者将围绕Btk的结构、功能、X连锁无丙种球蛋白血症的临床表现等方面的内容加以综述,着重探讨Btk参与B细胞信号通路、TLR信号通路和肥大细胞脱颗粒等过程的具体机制.  相似文献   

19.
GlcNAcylation of histone H2B facilitates its monoubiquitination   总被引:1,自引:0,他引:1  
  相似文献   

20.
Nitric oxide (NO) is an important biological messenger in the regulation of tissue homeostasis. It exhibits a wide range of effects during physiological and pathophysiological processes. Typical beneficial properties of NO include the regulation of vascular tone,the protection of cells against apoptosis, the modulation of immune responses, and the killing of microbial pathogens. On the other hand,NO may cause severe vasodilation and myocardial depression during bacterial sepsis or act as a cytotoxic and tissue-damaging molecule in autoimmune diseases. Mitogen-activated protein kinase (MAPK) is a family of serine/threonine protein kinases that are widely distributed in mammalian cells. MAPK cascade plays pivotal roles in gene expression, cell proliferation, differentiation, neuronal survival and programmed cell death under a variety of experimental conditions. MAPKs transduce the signal for the cellular response to extracellular stresses or stimuli. The relation between them, however, has never been reviewed. Based on our researches and other reports in the field, we review their reciprocal regulatory functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号