首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
在300-77K温区内对射频溅射制备的a-Si:F,H薄膜样品作了直流电导测量,结果表明,当T>200K时载流子的传导是以最近邻跳迁传导为主,而在77K<T<140K温区变程跳跃传导点了主要地位,费米能级附近的隙态密度约为10^20cm^-3eV^-1。  相似文献   

2.
用全自动低温绝热量热计测定了水和正丙醇组成的共沸混合物(x(H2O)=0.568,x(n-C4H,OH)=0.432)在80~320K温区的摩尔热容.建立了共沸混合物与温度T的函数关系.结果表明:水和正丙醇组成的共沸混合物在102.04K发生玻璃态转化,在258.17K发生固-液相变,并获得了其相应的相变焓和相变熵.计算了以298.15K为基准的该共沸混合物的热力学函数.  相似文献   

3.
我们用电容瞬态技术研究了P型硅中金的空穴俘获截面与温度的关系。实验测得金的受主能级的空穴俘获截面对温度有强烈的依赖关系,即在150—200 K的温度范围内,σ_p~-=(3.7±0.7)×10~(-15)(300/T)~(2.9±0.3)Cm~2,在260—318K的范围内,施主能级的空穴俘获截面也与温度有关,在77—180K的温度范围内,  相似文献   

4.
用两格点分子场理论分析了合金Er2Fe17-xSix(x=0,1,2)的饱和磁化强度随温度的变化关系,得到了分子场系数nEE,nEF,nFF,计算机了居里温度,给出了分子场强度HEr(T),HFe(T)随温度变化的曲线,结果表明,当x增加时,分子场系数nFF明显增大,分子场强度HFe(T)亦随之增大,而HEr(T)在较低温区减小,在较高温区增大,并且nFF的增大是居里温度提高的主要原因。  相似文献   

5.
通过Landau-Devonshire的热动力学模型,研究了PbZr1-xTixO3(x=0.5、0.6、0.7、0.8、0.9)的结构转变与电热效应。发现50MV/m的强电场可使一级结构相变转变为二级连续相变。此外,零场下当x=0.5、0.6、0.7、0.8、0.9,一级结构转变温度分别为T0=665K、691K、713K、729K、740K。在强电场作用下,一级结构转变逐渐转变为二级相变,而转变温度逐渐升高,导致最大电熵变增强,比热也随之降低。PbZr1-xTixO3(x=0.5、0.6、0.7、0.8、0.9)的最大电热温变出现居里温度以上,即出现在居里温度以上200K附近。  相似文献   

6.
X是Banach空间,KX是一个锥,intK≠φ;K_R={x∈K:0≤ⅡxⅡ相似文献   

7.
用液相外延(LPE)方法在CdZnTe衬底上生长了厚度为14.19μm的Hg1-xCdxTe样品。在Hg1-xCdxTe中进行As掺杂,获得低温下的p型导电材料。对As掺杂Hg1-xCdxTe样品进行了磁输运测试,获得磁电阻和Hall电阻在不同温度下随磁场的变化曲线。用最大熵原理迁移率谱结合多载流子拟合(MEPMS+MCF)的分析方法,获得样品中参与导电的载流子种类,以及每种载流子浓度和迁移率随温度的变化。结果表明,在20~280 K的温度范围,空穴的浓度开始随温度的升高不断增加,到100 K后,空穴的浓度随温度的升高逐渐减小。其迁移率在低温区随温度的升高逐渐减小,到100 K后,迁移率随温度的升高逐渐增加。在100~280 K的温度范围,本征激发的电子开始参与导电,其浓度随温度的升高不断增加,迁移率随温度的升高不断减小。用MEPMS+MCF分析方法获得的零场电阻与实验结果很好符合。  相似文献   

8.
设K(x,y)满足K(x,y)=K(y,x)和K(tx,ty)=tλK(x,y).定义奇异积分算子T,T(f)(y)=∫+∞0K(x,y)f(x)dx,y∈(0,+∞),推导出获得算子T的范数的充分条件.利用这个结果,证明了一些新的积分不等式.  相似文献   

9.
通过固相反应法制备不同掺杂浓度的La0.7Ca0.3Mn1-xCuxO3(x=0~0.15)样品, 在77~300 K温度范围内测量了铜掺杂后样品电阻随温度的变化关系.结果表明, 在未引入铜杂质时, 低温铁磁相的电阻率满足T 2.5关系, 顺磁相符合小极化子近邻跳跃模型;在低掺杂下, 铁磁区可用T 4.5关系解释;随着掺杂浓度的增加, 在铁磁区和顺磁区, 任何单一模型均与实验不相符, 表明高掺杂样品的电输运性质存在未知模型.  相似文献   

10.
用电弧熔炼法制备了Pr2Fe17-xSix(x=0,0.1,0.15,0.3)系列合金,用粉末X线衍射和磁性测量研究样品的结构、磁性、磁熵变及绝热温变.结果表明:Pr2Fe17-xSix系列合金的晶体结构为Th2Zn17型菱方结构;随着Si含量的增加,居里温度由x=0时的290K提高到x=0.3时的328K;外加磁场为1.5T时,磁熵变由x=0时的2.39J/(kg.K)降低到x=0.3时的1.67J/(kg.K),但绝热温变没有显著变化.  相似文献   

11.
用精密自动绝热热量计测定了配合物Zn(Val)SO4·H2O在78~373K温区的摩尔热容,通过热容曲线的解析得到该配合物起始脱水温度为327.05K.将该温区的摩尔热容实验值用最小二乘法拟合得到摩尔热容(Cp,m)对温度(T)的多项式方程,并计算了它的各种热力学函数.此外,用惰性气氛下的TG DTG及DSC对该配合物的热分解过程进行了研究.  相似文献   

12.
设g是X_l~(1)型仿射Kac-Moody代数,X_l为A_l,D_l或E_l型,l≥3,n_+是g的正部分.n_+上的一个映射φ:n_+→n_+称为交换映射,如果对任意的x∈n_+,有[φ(x),x]=0.证明了n+上的导子是交换映射当且仅当它是零映射.  相似文献   

13.
具有离散参数齐次随机场的线性预测(Ⅱ)   总被引:6,自引:0,他引:6  
设{x(m,n)}是含有两个取整数值m,n的齐次随机场,T′={(n′,n′),-∞相似文献   

14.
设L[a,b]表示有限区间[a,b]上可积函数的全体,{f_n(x)}为定义在[a,b]上的一个函数列。若对任意的g(x)∈L[a,b],只要integral from n=a to b f_n(x)g(x)=0,n=1,2,3,……就有g(x)在[a,b]上几乎处处为零,则称{f_n(x)}在[a,b]上是完全的。著名的Müntz—Sz'asz定理指出:幂函数列{x~(n_p)}在[a,b]上完全的充分必要条件是sum from p=1 to ∞ 1/n_p=+∞。其中a≥0,0相似文献   

15.
关于同阶无穷小量的概念,在数学分析教材中通常出现两种不同的定义。第一种定义是:设x→x_0时,f(x)与g(x)均为无穷小量,如果存在正数K与L,使得在x_0的某空心邻域内,有K≤|f(x)/g(x)|≤L,则称当x→x_0时,f(x)与g(x)同阶无穷小。例如华师大数学系  相似文献   

16.
利用第一原理研究了纤锌矿结构InN(0001)表面结构.用两种势(US-PP和PAW)对氮化铟晶格常数优化,用US-PP势计算值和实验值符合的更好.US-PP势总能计算表明氮吸附在InN(0001)面的(2×2)结构H3位最稳定,铟吸附在InN(0001)面的(1×2)结构T4位最稳定.InN(0001)表面容易形成铟层,氮空位很可能是造成n型InN的高载流子浓度的施主.  相似文献   

17.
<正> §引言 设Ω=(0,1)×(0,1),K∈L~2(Ω)且满足对称条件: K(x,y)= K(y,x) a.e定义积分算子T: Tf(x)=integral from n=0 to 1K(x,y)f(y)dy熟知,T是L~2(0,1)上对称全连续算子,它有无穷多个本征值λ_n,假如这些本征值是按其绝对值递减次序排列的,那么当n→∞时,λ_n→0。如果核K(x,y)满足的条件更强,就可对λ_n趋于零的速度作出估计,已有的结果是:  相似文献   

18.
本文从体内载流子对自发极化屏蔽的机制出发,分析了过去在解释PTCR效应的理论中所忽略了的90°电畴结构,以及电畴结构随温度变化时对铁电补偿程度的影响,用稍微修正了的Heywang-Jonker模型,对施主掺杂钛酸钡半导体陶瓷中的PTCR效应作出进一步的解释。  相似文献   

19.
用精密自动绝热量热计测定了重铬酸钾晶体在 10 0~ 390K温区内的摩尔热容 .结果表明在所研究的温度区间内重铬酸钾无相变发生 ,但其热容在不同的温度范围表现出不同的变化趋势 .在 10 0K≤T≤2 75K和 2 75K≤T≤ 390K区间内 ,其热容随温度的升高明显增大 ,在 2 75K≤T≤ 35 0K区间 ,其热容约为定值 .将重铬酸钾实验摩尔热容Cp ,m/JK-1mol-1对温度T/K拟合 ,其结果为 :10 0K≤T≤ 2 75 .5 6 4K ,Cp ,m=0 .0 0 4 9T2 - 1.0 0 77T +12 3.13;2 75 .5 6 4K≤T≤ 35 1.76 6K ,Cp ,m=2 0 9.17± 2 .32 ;35 1.76 6K≤T≤ 390K ,Cp ,m=0 .0 2 6 6T2 - 18.92 7T +35 70 .1.根据实验摩尔热容与温度的函数关系 ,计算了以 2 98.15K为标准的重铬酸钾的热力学函数的变化值  相似文献   

20.
本文证明:对于任意连续的晶硅(α-S1)隙态密度分布g(E),非晶硅肖特基势垒(M/α-Si)的剖面是V(x)=A(x)(V_(bi)-u)exp(-Lx)+uA(x)=(exp(-2L(x_n-x))+1)/(exp(-2Lx_n)+1)这里u=r/L~2, r=en_e/kk_0, L~2=α~2g(Ei)/kk_0,x_n是势垒宽度.n_0是导带过剩电子密度,k和k_0分别是α-Si的介电常数和真空电容率.如果隙态过剩电子密度N_t>>n_e,则有V(x)=V_(bi)·exp(-Lx)这里V_(bi)是M/a-Si的内建势,而N_t=g(Ei)(E_(fn)-E(fi), N_1+n_e=N?这里E(fn)和E(fi)分别是n型α-Si和本征α-Si的费米能级,N?是电离施主浓度,g(E_i)是E=E_i时g(E)的值,并且在本文中称它为"α-Si有效隙态密度”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号