首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
本文证明了满足换位子恒等式“(xy-yx)~n=(xy-yx)~mP”的近似环的结构。定理1 R是d。g近似环,且有单位元1,(?)x,y∈R,存在正整数m=m(x,y),n=n(x,y),m>n及p(t)∈Z(t),使(xy-yx)~n=(xy-yx)~mP(xy-yx);如果R还满足(?)x,y∈R,xy-yx≠O就有(xy-yx)~l≠0,(?)l∈Z~+,则R为交换环。定理2 R是近似环,(?)x,y∈R,存在正整数m=m(x,y),n=n(x,y),m>n,及p∈R,使(xy-yx)~n=(xy-yx)~mP且如xy-yx≠0就有(xy-yx)~l≠0,(?)l∈Z~+,则R的全体(?)零元形成R的一个理想N;R/N是近似环R_i的亚直和。其中R_i为下列情形之一:(1)交换环,(2)近似域,(3)xR_i=Ri((?)0≠x∈R_i)。  相似文献   

2.
为讨论环的交换性,本文讨论了导子成为同态或反同态时,环R的结构;证明了:定理1 R是一个质环,d是R的一个导子且为环R的同态,则d=0.定理2 R是一个质环,d是R的一个导子且为环R的反同态,则d=0.定理3 半质环R若满足下述条件则必为交换环(xy-yx)~2=xy~2-y~2x (?)~x,y∈R  相似文献   

3.
借助于某种换位子等式,给出SZC环的定义,研究SZC环的一些性质.主要证明了如下结果:①SZC环是CN环和ZC环;②R为强正则环当且仅当R为SZC环和正则环;③设R为SZC环且C(R)≠R,若R为素环,则R为交换环;④R为Abel环当且仅当对任意e∈E(R),任意x∈R,存在n=n(e,x)>1,z=ze,x∈R,使得ex-xe=(ex-xe)nz;⑤R为CN环当且仅当对任意x∈N(R),任意y∈R,存在n=n(x,y)>1,z=zx,y∈N(R),使得xy-yx=(xy-yx)nz.  相似文献   

4.
环的两个交换性定理   总被引:1,自引:1,他引:0  
证明了满足下列条件的环是交换环1)设R为半质环,若对R中任意元x,y,存在整数m=m(y)>1,n=n(x,y)>1,使得(xmy)n-yxm∈Z(R)则R为交换环.2)设R为kothe半单环,若对R中任意元x,y,存在整数m=m(y)>1,n=n(x,y)>1,使得(xmy)n-yxm∈Z(R)则R为交换环.  相似文献   

5.
半质环的两个交换性定理   总被引:2,自引:2,他引:0  
证明了满足下列条件的半质环是交换环: 1)若对x,y,z∈R,存在整数m=m(x,z)>1,n=n(x,z)>1,使得[(xmy)n-xym,z]∈Z(R)则R为交换环.2)若对x,y,z∈R,存在整数m=m(y,z)>1,n=n(y,z)>1,使得[(xmy)n+xmy,z]∈Z(R)则R为交换环.  相似文献   

6.
零因子理想     
设R为交换环,a≠0∈R,取,则显然I_a为R中理想,且I_a≠0当且仅当a为R中零因子。记Z(R)为R中零因子集,一般Z(R)不一定是R中的理想,因Z(R)不一定关于加减法封闭,本文给出Z(R)为理想的条件。定理1 设R为交换环,如任取a,b∈Z(R),有,则Z(R)为R的理想。证由条件,有  相似文献   

7.
我们主要证明了如下一些结果:半素环R是交换环当且仅当R满足下列条件之一:(1)对任意x,y∈R,有(xmyl)n-ysxt∈Z(R),其中l,m,n,s,t为正整数.(2)对任意x,y∈R,有(xkys)n-xly∈Z(R),其中k,s,n,l是正整数,k≥l,且n,s至少有一个大于1.  相似文献   

8.
目的 环R的每一个单奇异的左(右)R-模是平坦的,则称R是左(右)SF'-环,文章研究SF'-环的正则性.方法 在幂等元是左半中心的和LANE-环的条件下讨论SF'-环.结果 得到了SF'-环是强正则环的两个充要条件:(1)R是左SF'-环,如果R/Z(RR)是约化的,则R是强正则环;(2)R是强正则环当且仅当R是满足幂等元左半中心的左SF'-环,且R是LANE-环.结论 这些结果对于解决SF-环是否是正则环有一定意义.  相似文献   

9.
设R是一特征为2的质环,Z是其中心,d是其非零导子,R不是S_(4-)环。U是R的李理想。如果d~2≠0,则当下列条件之一成立时必有U■Z:(1)d(U)■Z;(2)ad(U)■,0≠a∈R;(3)[a,d(U)]■Z,a∈R,a■Z;(4)[d(U),d(U)]■Z;(5)dδ(U)Z,δ是R的导子且δ~2≠0。  相似文献   

10.
讨论了素环理想上导子的性质.设R是6-扭自由的素环,I是R的非零理想,Z是环R的中心.若存在非零导子d,满足对任意的x∈I均有[x,d(x2)]∈Z或对任意的x∈I均有x2.d(x)∈Z且Z∩I≠{0},则环R为x交换环.  相似文献   

11.
半质环的一个交换性定理   总被引:2,自引:2,他引:0  
证明了满足下列条件的半质环是交换环:若对R中任意元a,c,R中非零中心元b,都有依于a,b,c的整系数多项式f(x,y),使[a-f(a,b),c]∈Z(R)其中f不含a的一次项.  相似文献   

12.
本文主要研究了ZGP-V'-环的非奇异性,证明了如下结果:(1)如果R是左ZGP-V'-环,则Z(RR)∩ Z(RR)=0且Z(RR)∩ J(R)=0;(2)如果R是左ZGP-V'、AGP-内射环,则R右非奇异.  相似文献   

13.
讨论元素满足两个以上多项式关系之一的半素环的交换性,证明了:定理1 R为半素环,(?)x,y∈R,若x,y满足如下3个关系式之一,则R为交换环:(i)(xy)~m-(xy)~(m_1)(yx)~(m_2)∈Z(R);(ii)(xy)~5-(yx)~1∈Z(R);(iii)(xy)~(k_1)(yx)~(k_2)-(yx)~(k_2)(xy)~(k_1)∈Z(R).其中m,m_i,k_i,s及t与x,y有关且m_1+m_2,t,k_1+k_2为有界自然数.定理2 R为半素环,若R满足下述四个条件之一,则R可换:(1)(?)x,y∈R,x~(2m)y~(2n)-x~my~(2n)x~m∈Z(R)或x~sy~t-y~tx~s∈Z(R);(2)(?)x,y∈R,x~(2m)y~(2n)-y~nx~(2m)y~n∈Z(R)或x~sy~t-y~tx~s∈Z(R);(3)(?)x,y∈R,(yx)~n-yx~ny~(n-1)∈Z(R)或(xy)~n-x~ny~n∈Z(R);(4)(?)x,y∈R,(yx)~n-x~(n-1)y~nx∈Z(R)或(xy)~n-x~ny~n∈Z(R).其中m,n,s,t为自然数,而(1)及(2)中的m,n,s,t与x,y相关,(3)及(4)中n(>1)只与x(或y)有关.  相似文献   

14.
设R是环且R的每个幂等元是左半中心的,本文中主要证明了下列条件是等价的:(1)R是强正则环;(2)R是左PP-环,且R是左WAP-内射环;(3)R是左WAP-内射环且R满足(*)条件.  相似文献   

15.
右n-C2环     
给了右n-C2环的概念.证明了如下结果:(1)环R是n-C2环当且仅当n∈Z+,对于a∈R,若r(an)=r(e),其中e2=e∈R,则e∈Ran;(2)若R是右n-C2环,则Zr(R)J(R);(3)若R是一个环,则下列条件等价:(i)R是n-正则环;(ii)R是右n-C2环和右n-Gpp环.  相似文献   

16.
讨论了素环理想上导子的性质,推广改进了文献[4],[5]中的结果.证明了下面定理,设R是2-扭自由的素环,I是R的非零理想,Z是环R的中心.若存在非零导子d,满足对任意的x∈I均有[x,d(x2)]∈Z或对任意的x∈I均有x2·d(x)∈Z且Z∩I≠{0}x2,则环R为交换环.  相似文献   

17.
研究了有限Artin局部主理想环R上的循环码的结构,推导出其生成元的形状,指出在满足一定条件下这样的码可以由单个生成元生成.具体构作了所有长为7的Z16-循环码的生成元.证明了在一定条件下,Rn=R[x]/(x^n-1)是一个主理想环.  相似文献   

18.
主要研究了AP-内射环成为连续环的条件.在AP-内射环满足C2条件的基础上,结合Baer环、duo环、半完全环、MI环等,探索了何时AP-内射环也满足C1条件,从而成为连续环,得到了一些相关结果:(1)设R是左AP-内射、左duo环,若R又是局部Baer环,则R是左连续环;(2)设R=i∈IRi是左AP-内射环,其中Ri是一致左理想,若R是Baer环且左duo,则R是左连续环;(3)设R是左AP-内射、左duo环,若R又是半完全的Baer环,则R是左连续环;(4)设R是左AP-内射环,RR是弱内射的,则R是左连续环;(5)设R是左AP-内射、左MI环,则R是左连续环.  相似文献   

19.
目的环R的每一个单奇异的左(右)R-模是平坦的,则称R是左(右)SF′-环,文章研究SF′。环的正则性。方法在幂等元是左半中心的和LANE-环的条件下讨论SF′-环。结果得到了SF′-环是强正则环的两个充要条件:(1)R是左SF′-环,如果R/Z(RR)是约化的,则R是强正则环;(2)R是强正则环当且仅当R是满足幂等元左半中心的左SF′-环,且R是LANE-环。结论这些结果对于解决SF-环是否是正则环有一定意义。  相似文献   

20.
讨论了带有非零导子的结合环的交换性,证明了:定理1 R是特征非2的素环,f,g为R的两个非零导子,若有自然数n使得x~nfg(y)-fg(y)x~n∈Z(R) (?)x,y∈R则R可换.定理3 R为无零因子环,d为R的非零导子,若(?)x∈R,d~n_x∈Z(R)且R的特征不是(n+1)1的因子,则R可换.定理5 若素环R的特征不为2,U为R的非零Lie理想,且(?)u∈U有udu+duu∈Z(R),则u~2∈Z(R)且当u~2∈U时,U(?)Z(R).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号