首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Turecek R  Trussell LO 《Nature》2001,411(6837):587-590
Glycine and GABAA (gamma-aminobutyric acid A) receptors are inhibitory neurotransmitter-gated Cl- channels localized in postsynaptic membranes. In some cases, GABAA receptors are also found presynaptically, but they retain their inhibitory effect as their activation reduces excitatory transmitter release. Here we report evidence for presynaptic ionotropic glycine receptors, using pre- and postsynaptic recordings of a calyceal synapse in the medial nucleus of the trapezoid body (MNTB). Unlike the classical action of glycine, presynaptic glycine receptors triggered a weakly depolarizing Cl- current in the nerve terminal. The depolarization enhanced transmitter release by activating Ca2+ channels and increasing resting intraterminal Ca2+ concentrations. Repetitive activation of glycinergic synapses on MNTB neurons also enhanced glutamatergic synaptic currents, indicating that presynaptic glycine receptors are activated by glycine spillover. These results reveal a novel site of action of the transmitter glycine, and indicate that under certain conditions presynaptic Cl- channels may increase transmitter release.  相似文献   

2.
The modulation of voltage-dependent calcium channels by various neurotransmitters has been demonstrated in many neurons. Because of the critical role of Ca2+ in transmitter release and, more generally, in transmembrane signalling, this modulation has important functional implications. Hippocampal neurons possess low-threshold (T-type) Ca2+ channels and both L- and N-type high voltage-activated Ca2+ channels. N-type Ca2+ channels are blocked selectively by omega-conotoxin and adenosine. These substances both block excitatory synaptic transmission in the hippocampus, whereas dihydropyridines, which selectively block L-type channels, are ineffective. Excitatory synaptic transmission in the hippocampus displays a number of plasticity phenomena that are initiated by Ca2+ entry through ionic channels operated by N-methyl-D-aspartate (NMDA) receptors. Here we report that NMDA receptor agonists selectively and effectively depress N-type Ca2+ channels which are involved in neurotransmitter release from presynaptic sites. The inhibitory effect is eliminated by the competitive NMDA antagonist D-2-amino-5-phosphonovalerate, does not require Ca2+ entry into the cell, and is probably receptor-mediated. This phenomenon may provide a negative feedback between the liberation of excitatory transmitter and entry of Ca2+ into the cell, and could be important in presynaptic inhibition and in the regulation of synaptic plasticity.  相似文献   

3.
R S Zucker  P G Haydon 《Nature》1988,335(6188):360-362
Neurons communicate by secreting a transmitter that excites or inhibits other neurons at synapses. The role of presynaptic membrane potential in triggering transmitter release is still controversial. In one view, presynaptic action potentials trigger the release by the entry of calcium ions into presynaptic terminals through voltage-dependent calcium channels. Calcium acts at high local concentrations at release sites near channel mouths to cause neurosecretion. An opposing view is that, in addition to elevating presynaptic calcium, presynaptic potential stimulates transmitter release by a distinct direct action. The relative importance of depolarization and calcium entry in neurosecretion cannot be determined because the two events are tightly linked. To delineate the roles of presynaptic potential and calcium entry in transmitter release, we have used nitr-5, a photolabile calcium chelator, and a voltage-clamp technique to control intracellular calcium and membrane potential independently at a synapse formed between cell bodies of cultured neurons of the fresh water snail Helisoma trivolvis. We found transmitter release occurred when presynaptic calcium levels were elevated to concentrations of a few micromolar, and that presynaptic voltage had no direct effect on neurosecretion.  相似文献   

4.
A Malgaroli  R W Tsien 《Nature》1992,357(6374):134-139
Glutamate application at synapses between hippocampal neurons in culture produces long-term potentiation of the frequency of spontaneous miniature synaptic currents, together with long-term potentiation of evoked synaptic currents. The mini frequency potentiation is initiated postsynaptically and requires activity of NMDA receptors. Although the frequency of unitary quantal responses increases strongly, their amplitude remains little changed with potentiation. Tests of postsynaptic responsiveness rule out recruitment of latent glutamate receptor clusters. Thus, postsynaptic induction can lead to enhancement of presynaptic transmitter release. The sustained potentiation of mini frequency is expressed even in the absence of Ca2+ entry into presynaptic terminals.  相似文献   

5.
Lou X  Scheuss V  Schneggenburger R 《Nature》2005,435(7041):497-501
Neurotransmitter release is triggered by an increase in the cytosolic Ca2+ concentration ([Ca2+]i), but it is unknown whether the Ca2+-sensitivity of vesicle fusion is modulated during synaptic plasticity. We investigated whether the potentiation of neurotransmitter release by phorbol esters, which target presynaptic protein kinase C (PKC)/munc-13 signalling cascades, exerts a direct effect on the Ca2+-sensitivity of vesicle fusion. Using direct presynaptic Ca2+-manipulation and Ca2+ uncaging at a giant presynaptic terminal, the calyx of Held, we show that phorbol esters potentiate transmitter release by increasing the apparent Ca2+-sensitivity of vesicle fusion. Phorbol esters potentiate Ca2+-evoked release as well as the spontaneous release rate. We explain both effects by an increased fusion 'willingness' in a new allosteric model of Ca2+-activation of vesicle fusion. In agreement with an allosteric mechanism, we observe that the classically high Ca2+ cooperativity in triggering vesicle fusion (approximately 4) is gradually reduced below 3 microM [Ca2+]i, reaching a value of <1 at basal [Ca2+]i. Our data indicate that spontaneous transmitter release close to resting [Ca2+]i is a consequence of an intrinsic property of the molecular machinery that mediates synaptic vesicle fusion.  相似文献   

6.
A variety of evidence indicates that calcium-dependent protein phosphorylation modulates the release of neurotransmitter from nerve terminals. For instance, the injection of rat calcium/calmodulin-dependent protein kinase II (Ca2+/CaM-dependent PK II) into the preterminal digit of the squid giant synapse leads to an increase in the release of a so-far unidentified neurotransmitter induced by presynaptic depolarization. But until now, it has not been demonstrated that Ca2+/CaM-dependent PK II can also regulate neurotransmitter release in the vertebrate nervous system. Here we report that the introduction of Ca2+/CaM-dependent PK II, autoactivated by thiophosphorylation, into rat brain synaptosomes (isolated nerve terminals) increases the initial rate of induced release of two neurotransmitters, glutamate and noradrenaline. We also show that introduction of a selective peptidergic inhibitor of Ca2+/CaM-dependent PK II inhibits the initial rate of induced glutamate release. These results support the hypothesis that activation of Ca2+/CaM-dependent PK II in the nerve terminal removes a constraint on neurotransmitter release.  相似文献   

7.
Action potentials must admit calcium to evoke transmitter release.   总被引:1,自引:0,他引:1  
R M Mulkey  R S Zucker 《Nature》1991,350(6314):153-155
There are two hypotheses to explain how neurons release transmitter. The calcium hypothesis proposes that membrane depolarization is necessary only for opening calcium channels and increasing internal calcium concentration ([Ca2+]i) near membrane transmitter-release sites. These calcium ions trigger a transient release of neurotransmitter. The calcium-voltage hypothesis postulates that voltage induces a conformational change in a membrane protein rendering it sensitive to calcium such that, in the presence of high [Ca2+]i, depolarization directly triggers transmitter release. Here we report that when calcium influx is blocked by cobalt or manganese ions in a calcium-free Ringer, as measured with Fura-2, and [Ca2+]i is elevated by liberation from a caged calcium compound, transmitter release at the crayfish neuromuscular junction is unaffected by presynaptic action potentials. These results support the calcium hypothesis.  相似文献   

8.
B Hochner  H Parnas  I Parnas 《Nature》1989,342(6248):433-435
The discovery that Ca2+ is necessary for the release of neurotransmitter, the primary means by which nerve cells communicate, led to the calcium hypothesis of neutransmitter release, in which release is initiated after an action potential only by an increase in intracellular Ca2+ concentration near the release sites and is terminated (1-2 ms) by the rapid removal of Ca2+. Since then, the calcium-voltage hypothesis has been proposed, in which the depolarization of the presynaptic terminals has two functions. First, in common with the calcium hypothesis, the Ca2+ conductance is increased, thereby permitting Ca2+ entry. Second, a conformational change is induced in a membrane molecule that renders it sensitive to Ca2+, and then binding of Ca2+ to this active form triggers release of neurotransmitter. When the membrane is repolarized, the molecule is inactivated and release is terminated, regardless of the local Ca2+ concentration at that moment. This hypothesis, in contrast to the calcium hypothesis, accounts for the insensitivity of the time course of release to experimental manipulations of intracellular Ca2+ concentration. Furthermore, it explains rapid termination of release after depolarization, even though Ca2+ concentration may still be high. Here we describe experiments that distinguish between these two hypotheses and find that our results support the calcium voltage hypothesis.  相似文献   

9.
Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis   总被引:1,自引:0,他引:1  
Synapses are specialized intercellular junctions in which cell adhesion molecules connect the presynaptic machinery for neurotransmitter release to the postsynaptic machinery for receptor signalling. Neurotransmitter release requires the presynaptic co-assembly of Ca2+ channels with the secretory apparatus, but little is known about how synaptic components are organized. Alpha-neurexins, a family of >1,000 presynaptic cell-surface proteins encoded by three genes, link the pre- and postsynaptic compartments of synapses by binding extracellularly to postsynaptic cell adhesion molecules and intracellularly to presynaptic PDZ domain proteins. Using triple-knockout mice, we show that alpha-neurexins are not required for synapse formation, but are essential for Ca2+-triggered neurotransmitter release. Neurotransmitter release is impaired because synaptic Ca2+ channel function is markedly reduced, although the number of cell-surface Ca2+ channels appears normal. These data suggest that alpha-neurexins organize presynaptic terminals by functionally coupling Ca2+ channels to the presynaptic machinery.  相似文献   

10.
Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses   总被引:44,自引:0,他引:44  
Wilson RI  Nicoll RA 《Nature》2001,410(6828):588-592
Marijuana affects brain function primarily by activating the G-protein-coupled cannabinoid receptor-1 (CB1), which is expressed throughout the brain at high levels. Two endogenous lipids, anandamide and 2-arachidonylglycerol (2-AG), have been identified as CB1 ligands. Depolarized hippocampal neurons rapidly release both anandamide and 2-AG in a Ca2+-dependent manner. In the hippocampus, CB1 is expressed mainly by GABA (gamma-aminobutyric acid)-mediated inhibitory interneurons, where CB1 clusters on the axon terminal. A synthetic CB1 agonist depresses GABA release from hippocampal slices. These findings indicate that the function of endogenous cannabinoids released by depolarized hippocampal neurons might be to downregulate GABA release. Here we show that the transient suppression of GABA-mediated transmission that follows depolarization of hippocampal pyramidal neurons is mediated by retrograde signalling through release of endogenous cannabinoids. Signalling by the endocannabinoid system thus represents a mechanism by which neurons can communicate backwards across synapses to modulate their inputs.  相似文献   

11.
Neurotransmitters are released by synaptic vesicle fusion at the active zone. The active zone of a synapse mediates Ca2+-triggered neurotransmitter release, and integrates presynaptic signals in regulating this release. Much is known about the structure of active zones and synaptic vesicles, but the functional relation between their components is poorly understood. Here we show that RIM1alpha, an active zone protein that was identified as a putative effector for the synaptic vesicle protein Rab3A, interacts with several active zone molecules, including Munc13-1 (ref. 6) and alpha-liprins, to form a protein scaffold in the presynaptic nerve terminal. Abolishing the expression of RIM1alpha in mice shows that RIM1alpha is essential for maintaining normal probability of neurotransmitter release, and for regulating release during short-term synaptic plasticity. These data indicate that RIM1alpha has a central function in integrating active zone proteins and synaptic vesicles into a molecular scaffold that controls neurotransmitter release.  相似文献   

12.
Y Dan  M M Poo 《Nature》1992,359(6397):733-736
It is well known that transmitter secretion requires specialized secretory organelles, the synaptic vesicles, for the packaging, storage and exocytotic release of the transmitter. Here we report that when acetylcholine (ACh) is loaded into an isolated Xenopus myocyte, there is spontaneous quantal release of ACh from the myocyte which results in activation of its own surface ACh channels and the appearance of membrane currents resembling miniature endplate currents. This myocyte secretion probably reflects Ca(2+)-regulated exocytosis of ACh-filled cytoplasmic compartments. Furthermore, step depolarization of the myocyte membrane triggers evoked ACh release from the myocyte with a weak excitation-secretion coupling. These findings suggest that quantal transmitter secretion does not require secretory pathways unique to neurons and that the essence of presynaptic differentiation may reside in the provision of transmitter supply and modification of the preexisting secretion pathway.  相似文献   

13.
Mackler JM  Drummond JA  Loewen CA  Robinson IM  Reist NE 《Nature》2002,418(6895):340-344
Synaptotagmin is a synaptic vesicle protein that is postulated to be the Ca(2+) sensor for fast, evoked neurotransmitter release. Deleting the gene for synaptotagmin (syt(null)) strongly suppresses synaptic transmission in every species examined, showing that synaptotagmin is central in the synaptic vesicle cycle. The cytoplasmic region of synaptotagmin contains two C(2) domains, C(2)A and C(2)B. Five, highly conserved, acidic residues in both the C(2)A and C(2)B domains of synaptotagmin coordinate the binding of Ca(2+) ions, and biochemical studies have characterized several in vitro Ca(2+)-dependent interactions between synaptotagmin and other nerve terminal molecules. But there has been no direct evidence that any of the Ca(2+)-binding sites within synaptotagmin are required in vivo. Here we show that mutating two of the Ca(2+)-binding aspartate residues in the C(2)B domain (D(416,418)N in Drosophila) decreased evoked transmitter release by >95%, and decreased the apparent Ca(2+) affinity of evoked transmitter release. These studies show that the Ca(2+)-binding motif of the C(2)B domain of synaptotagmin is essential for synaptic transmission.  相似文献   

14.
A presynaptic action of glutamate at the cone output synapse   总被引:11,自引:0,他引:11  
M Sarantis  K Everett  D Attwell 《Nature》1988,332(6163):451-453
Neurotransmitter release from many central nervous system synapses is regulated by 'autoreceptors' at the synaptic terminal, which bind the released transmitter and alter release accordingly. The photoreceptors of lower vertebrates are thought to use glutamate as a neurotransmitter. Glutamate conveys the visual signal to postsynaptic bipolar and horizontal cells, but has been reported not to act on the photoreceptors themselves. We show here that glutamate evokes a current, carried largely by chloride ions, in cones isolated from the tiger salamander retina. This response is localized to the synaptic terminal of the cone. Removing external sodium blocks this action of glutamate. These results suggest the existence of a positive feedback loop at the cone output synapse: over most of the light-response range, glutamate released by depolarization of the cone will cause further depolarization, increasing the gain of phototransduction. Glutamate released from rods may also polarize cones, modulating the gain of the cone output synapse. This system is surprisingly different from the autoreceptor systems for most other transmitters, which act in a negative feedback way.  相似文献   

15.
16.
N F Lim  M C Nowycky  R J Bookman 《Nature》1990,344(6265):449-451
The release of neurohormone is widely thought to be exocytotic, involving Ca2(+)-dependent fusion of secretory vesicles with the plasma membrane. The inaccessibility of most nerve ending has so far hampered direct time-resolved measurements of neuronal exocytosis in response to brief depolarization. By using 'whole-terminal' patch-clamp and circuit-analysis techniques to measure membrane capacitance, we have now monitored changes in the surface membrane area of individual nerve terminals isolated from the mammalian neurohypophysis. A single depolarizing pulse leading to Ca2+ entry through voltage-gated calcium channels, rapidly and reproducibly increases the membrane area by an amount corresponding to the fusion of 1-100 secretory vesicles. The magnitude of the capacitance increase depends not only on Ca2+ entry and buffering, but also on the pattern of stimulation revealing facilitation, fatigue and recovery of the release process.  相似文献   

17.
Depolarization of pancreatic cells by exposure to high potassium solutions is associated with release of amylase. In the guinea pig, but not the mouse or cat, this Ca-dependent amylase secretion is resistant to atropine blockade, thus Scheele and Haymovits concluded that the enzyme secretion evoked by K depolarization does not involve release of transmitter from intrapancreatic nerves but is a consequence of Ca uptake into acinar cells mediated by the membrane depolarization. This hypothesis is inconsistent with current concepts of stimulus--secretion coupling in electrically non-excitable cells. The observation of Scheele and Haymovits could, however, also be explained by the release of a non-cholinergic, secretomotor transmitter as a consequence of the depolarization of intrapancreatic nerves. By adapting the technique of electrical field stimulation of isolated pancreatic segments to our studies of amylase secretion, we have now been able to demonstrate both cholinergic and non-cholinergic, non-adrenergic secretomotor nerves in the guinea pig pancreas. Excitation of the non-cholinergic nerves stimulates amylase secretion by a different intracellular coupling mechanism from that activated by cholinergic nerves or by peptides belonging to the cholecystokinin, gastrin or bombesin families.  相似文献   

18.
A Roberts  S Perera  B Lang  A Vincent  J Newsom-Davis 《Nature》1985,317(6039):737-739
Certain cancers exert unexplained remote effects on the nervous system. Small cell carcinoma (SCC) of the lung, a tumour capable of spike electrogenesis and which is of possible neural crest origin, is present in approximately 70% of patients with the Lambert-Eaton myasthenic syndrome (LEMS), a disorder characterized by fatigable muscle weakness. Patients with this syndrome have a defect in the (Ca2+-dependent) quantal release of acetylcholine from motor nerve terminals evoked by a nerve impulse or by high K+ (ref.5), and a decreased number of presynaptic active zone particles. The physiological and morphological features of the syndrome can be transferred to mice by the patients' IgG, consistent with an autoantibody interfering with the function of voltage-dependent Ca2+ channels. Here we demonstrate that K+-induced 45Ca2+ flux in a cultured human SCC line is significantly reduced by LEMS IgG, suggesting that in SCC-LEMS an autoantibody to tumour Ca2+-channel determinants is triggered; its cross-reaction with similar determinants at the motor nerve terminal could lead to the remote neurological syndrome.  相似文献   

19.
Neurotransmitter can modulate neuronal activity through a variety of second messengers that act on ion channels and other substrate proteins. The most commonly described effector mechanism for second messengers in neurons depends on protein phosphorylation mediated by one of three sets of kinases: the cyclic AMP-dependent protein kinases, the Ca2+-calmodulin-dependent protein kinases, and the Ca2+-phospholipid-dependent protein kinases. In addition, some neurotransmitters and second messengers can also inhibit protein phosphorylation by lowering cAMP levels (either by inhibiting adenylyl cyclase or activating phosphodiesterases). This raises the question: can neurotransmitters also modulate neuronal activity by decreasing protein phosphorylation that is independent of cAMP? Various biochemical experiments show that a decrease in protein phosphorylation can arise through activation of a phosphatase or inhibition of kinases. In none of these cases, however, is the physiological role for the decrease in protein phosphorylation known. Here we report that in Aplysia sensory neurons, the presynaptic inhibitory transmitter FMRFamide decreases the resting levels of protein phosphorylation without altering the level of cAMP. Furthermore, FMRFamide overrides the cAMP-mediated enhancement of transmitter release produced by 5-hydroxytryptamine (5-HT), and concomitantly reverses the cAMP-dependent increase in protein phosphorylation produced by 5-HT. These findings indicate that a receptor-mediated decrease in protein phosphorylation may play an important part in the modulation of neurotransmitter release.  相似文献   

20.
M G?thert 《Nature》1980,288(5786):86-88
Somatostatin in a hypothalamic peptide hormone which inhibits growth hormone release from the anterior pituitary. However, biochemical and morphological investigations have revealed that somatostatin is located not only in the hypothalamus but also in other brain areas (for example the cerebral cortex) where it occurs and in nerve cell bodies and fibres from which it can be released in a Ca2+-dependent manner. It has therefore been suggested that the neuropeptide may have functions in the central nervous system other than its effect on growth hormone release; one possible action is that of a neuromodulator. Therefore, hypothalamic and cerebral cortical slices of the rat were used to examine whether somatostatin modifies the electrically or CaCl2-evoked release of tritiated monoamines from monoaminergic neurones. it is reported here that somatostatin inhibits 3H-noradrenaline release from the hypothalamus (but not from the cerebral cortex) but does not affect the release of 3H-dopamine and 3H-serotonin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号