共查询到20条相似文献,搜索用时 15 毫秒
1.
特征2矩阵空间上幂等保持映射 总被引:1,自引:1,他引:0
设F是除F2={0,1}之外的特征是2的域,Mn(F)是域F上的n×n 矩阵空间,Pn(F)是Mn(F)的包含所有n×n 幂等矩阵的子集.定义Фn(F)是从Mn(F)到Mn(F)满足A-λB∈Pn(F)蕴涵着φ(A)-λφ(B)∈Pn(F)对所有A,B∈Mn(F)及λ∈F成立的映射的集合.当n≥3时,集合{φ∈Фn(F)1(E) 可逆阵T∈Mn(F)使得Tφ(Ekk)T-1=Ekk,k=1,…,n}被刻画,丰富了相应文献的结果. 相似文献
2.
域上从对称矩阵空间到全矩阵空间保幂等的线性算子 总被引:5,自引:4,他引:5
刻画了特征不为2,3,5的域F上从对称矩阵空间Sn(F)到全矩阵空间Mm(F)的保幂等的线性算子(n≤m)。类似地,立方幂等保持,群逆保持,{1}逆保持,{1,2)逆保持等也被刻画。 相似文献
3.
设Sm是复数域C上m×m对称矩阵全体,Pm是Sm中全体幂等矩阵构成的子集.主要刻画了保持对称矩阵张量积幂等的线性映射φ:Sm?Sn→Smn即A?B∈Pmn?φ(A?B)∈Pmn的形式.是对矩阵张量积空间上的线性保持问题的补充和发展. 相似文献
4.
5.
以Tn(F)表示F上所有n×n上三角矩阵所组成的空间.刻画了Tn(F)上保持秩可加的线性映射. 相似文献
6.
讨论2 X2对称矩阵空间S2到2×2全矩阵空间M2上保持立方幂等的映射形式.设φ:S2→M2,如果对任意矩阵A,B∈S2及数λ∈C有A-λB为立方幂等阵当且仅φ(A)-λφ(B)为立方幂等阵,则存在可逆阵P∈M2及数ε∈{1,-1}使得对任意的A∈S2有φ(A)=εPAP-1. 相似文献
7.
2×2矩阵代数保持幂等的映射 总被引:2,自引:0,他引:2
徐金利 《黑龙江大学自然科学学报》2004,21(4):128-131
令M2是特征为2且元素个数大于2的域上的2×2矩阵代数.令P2记M2中幂等阵全体的集合,设φ是从M2到M2的单映射且满足由A-λB∈P2可以推出φ(A)-λφ(B)∈P2.则φ的形式是φ(A)=TAT-1
A∈M2或者φ(A)=TAtT-1 A∈M2其中T是M2中的某个非奇异阵. 相似文献
8.
设C是复数域,T2(C)是C上2×2上三角矩阵代数.Tk2(C)记T2(C)中的所有k-幂等矩阵构成的子集,这里k≥2.若映射φ满足:由A-λB∈Tk2(C)可以推出φ(A)-λφ(B)∈Tk2(C),则称φ是保k幂等的.用Ф(C)记所有从T2(C)到自身的上述单射φ的集合.给出Ф(C)中算子的形式. 相似文献
9.
二阶特殊矩阵空间保幂等的映射 总被引:4,自引:2,他引:2
设F1是特征不为2、3、5的域,F2是特征不为2的域,M2(F1)记F1上2×2全矩阵空间,S2(F1)记F1上2×2对称矩阵空间,T2(F2)是F2上2×2上三角矩阵空间.确定了从S2(F1)到M2(F1)以及从T2(F2)到T2(F2)保幂等的映射形式. 相似文献
10.
设F是特征不为2,3的域,T2(F)是F上2×2上三角矩阵代数。T是T2(F)中的所有立方幂等矩阵构成的子集。Φ(F)记所有从T2(F)到自身的单射φ的集合且φ满足:由A-λB∈T可以推出φ(A)-λφ(B)∈T.刻划了Φ(F)中的形式。 相似文献
11.
在给定的集合上研究保持某种不变量的映射的问题被称为保持问题,该问题已成为矩阵理论中的一个核心研究领域.主要刻画了Hermite矩阵张量积空间■保持秩可加和秩和最小的线性映射. 相似文献
12.
13.
14.
对n维线性空间V上的幂等线性变换的性质进行了讨论,给出了n维线性空间V上的幂等线性变换的几个重要性质. 相似文献
15.
域上对称矩阵空间上的保逆线性映射 总被引:2,自引:1,他引:1
设F是特征不为2或3的域,n和m是正整数,且n≤m.设Sn(F)为F上n阶对称矩阵空间,Mm(F)为F上m阶全矩阵空间,GLn(F)为F上n阶一般线性群.设f是从Sn(F)到Mm(F)上的线性映射,若f满足f(X)-1=f(X-1),X∈Sn(F)∩GLn(F),则称f为保逆线性映射,并将保逆线性映射的集合记为N-1(Sn(F),Mm(F)).分别刻画了从Sn(F)到Mm(F)和Sn(F)到Sm(F)上的线性映射. 相似文献
16.
矩阵空间上线性保持问题的几个结果 总被引:1,自引:1,他引:0
设Mn(F)表示域F上所有n×n矩阵构成的线性空间,sln(F)表示Mn(F)的包含所有迹零矩阵的子空间。基于一些现有的结论,刻划了Mn(F)上可逆的线性秩1平方零(平方零、对合)保持,以及Mn(F)上强线性平方零(对合)保持,所获得的结果展示了几类线性保持问题间的关系。 相似文献
17.
设F是特征不为2且元素个数大于3的域,n和m是正整数,令Sn(F)和Mn(F)分别是F上n×n对称矩阵空间和全矩阵空间,GLm(F)为F上m阶一般线性群,设f是从Sn(F)到Mm(F)上的线性映射,若f满足f(X)-1=f(X-1),X∈Sn(F)∩GLn(C),称f为保逆线性映射.刻画了从Sn(F)到Mm(F)以及从Sn(F)到Sm(F)上保逆线性映射. 相似文献
18.
矩阵空间之间的秩的线性保持 总被引:1,自引:0,他引:1
张显 《黑龙江大学自然科学学报》2005,22(1):12-15
设m,n是正整数,n≥2,F是包含至少三个元素的域.Mn(F)记F上所有n阶矩阵构成的线性空间,Sn(F)记F上所有n阶对称矩阵构成的线性空间.设V和W是Mn(F)的两个子空间.如果线性算子fV→W满足rankf(X)=rankX对于所有的X∈V成立,则称f是从V到W的秩的线性保持.证明了f是从Sn(F)到Mm(F)的秩的线性保持的充分必要条件是n≤m且存在非奇异矩阵U,V∈Mm(F)满足f(A)=U(A+0)V对于所有的A∈Sn(F)成立.由此,确定了所有的从Sn(F)到Sm(F)及从Mn(F)到Mm(F)的秩的线性保持的一般形式. 相似文献
19.
关于复Hermite矩阵的线性保持 总被引:1,自引:0,他引:1
设C为复数域,R为实数域,m,n是两个任意的正整数.记Mn(C)和Hn(C)分别为R上n×n全矩阵空间和n×n复Hermite矩阵空间.设T是从Hn(C)到Mm(C)的线性算子,若由A2=A可推出T(A)2=T(A),则称T是保幂等的.主要刻画了从Hn(C)到Mm(C)以及从Hn(C)到Hm(C)的保幂等的线性算子(m≠n).类似的,立方幂等保持,群逆保持等也被刻画. 相似文献
20.
反对称矩阵空间行列式保持映射 总被引:1,自引:0,他引:1
令SKn(R)为实数域R上所有n×n反对称矩阵构成的空间,研究SKn(R)上行列式的保持映射.并且当满足下列情况之一时,对它进行了刻画.1. det(A+λB)=det((A)+λ(B) ) A,B∈SKn(R) λ∈R2. 是满射且对两个特殊的λ有det(A+λB)=det((A)+λ(B) ) A,B∈SKn(R)3. 是加法映射且detA=det((A) ) A∈SKn(R) 相似文献