首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
一类紧凑格式的约束矩阵方程解的Cramer法则   总被引:1,自引:1,他引:0  
证明了一类约束矩阵方程WAWXW~BW~=D,R(X) R[(X) R(AW)k1],N(X) N[(W~B)k~2]有唯一解并给出其解的Cramer法则,其中A∈Cm×n,W∈Cn×m,Ind(AW)=k1,Ind(BW~)=k~1,B∈Cp×q,W~∈Cq×p,Ind(WA)=k2,Ind(W~B)=k~2,and D∈Cn×p,R(D) R[(WA)k2],N(D) N[(BW~)k~1].  相似文献   

2.
设Sm是复数域?上m×m对称矩阵全体.线性映射φ:Sm(×)Sn→Smn保持矩阵张量积秩,即rankφ(A(×)B)=rank(A(×)B),?A∈Sm,B∈Sn当且仅当存在可逆阵P∈Mmn使得φ(X)=PXPt,?X∈Sm(×)Sn.本文是对矩阵张量积空间上的线性保持问题的补充和发展.  相似文献   

3.
Fm×n表示域F上所有m×n矩阵的集合.R(A)和Nr(A)分别表示矩阵A∈Fm×n的列空间和核空间.若m=n,用Ind(A)定义矩阵A的指标.给出了求一类约束矩阵方程WAWXWBW=D,R(X)R((AW)k1),Nr(X)Nr((WB)k2)的唯一解的Cramer法则,其中A∈Fm×n,W∈Fn×m,B∈Fp×q,W∈Fq×p,D∈Fn×p,R(D)R((WA)k2),Nr(D)Nr((BWk1),k1=Ind(AW),k2=Ind(WA),k1=Ind(BW),k2=Ind(WB).这将[15-17]中的结果从复数域推广到任意域.  相似文献   

4.
Todd,M.J在[1]中讨论了矩阵方程.AX=B的一些性质,阐明它们与不动点理论之间的密切联系。 这里A为m×(m 1)实矩阵,B为m×n实矩阵,rank(A)=rank(B)=m。 称矩阵方程(p)AX=B可解,指的是存在一个字典序非负矩阵X_0满足(p)。 定义1 称向量a=(a_1,a_2,…,a_m)为字典序正的向量,当且仅当a_j>0,这里j=min{i|a_i≠0},此时记a>0。如果a>0或a=0,称a是字典序非负向量,记作a≥0。10,这里j=min{i|a_i- 1相似文献   

5.
为了进一步整合线性代数的内容,利用分块矩阵与λ-多项式理论对子块为矩阵多项式的矩阵的秩进行系统的论述.得到的主要结论:设B(λ)∈F[λ]s×t,A∈F n×n,则rank(B(A))=rank(h1(A))++rank(hr(A)),其中:r=rank(B(λ));h1(λ),,hr(λ)∈F[λ]为任意非零多项式,且h1(λ),,hr(λ)的标准分解式中不可约因子的方幂构成B(λ)的全部初等因子.  相似文献   

6.
设Kn(F)是域F上所有n×n交错矩阵构成的线性空间.如果一个算子f:Kn(F)→Kn(F)满足对所有的A,B∈Kn(F)有f(A+B)=f(A)+f(B)并且对任意的X∈Kn(F)有rankf(X)=rankX,则称f是Kn(F)上的加法秩保持.当n是不小于4的整数且F任意时,证明了f是Kn(F)上的加法秩保持当且仅当存在非零的纯量γ、非奇异的n×n矩阵P和域F的单自同态δ满足或者f:[aij]|→αP[aijδ]PT,或者n=4且f:[aij]|→αP([aiδj])PT,其中:K4(F)→K4(F)表示对换(1,4)和(2,3)位置元素及(4,1)和(3,2)位置元素的算子.  相似文献   

7.
障碍问题局部可积性的一个注记   总被引:1,自引:1,他引:0  
考虑A-调和方程divA(x,u)=0,设算子A满足:(i)强制性条件A(x,ξ),ξ≥α|ξ|p-φ1(x);(ii)控制增长条件|A(x,ξ)|≤β|ξ|p-1+φ2(x);(iii)齐次性条件A(x,0)=0,其中1pn,0α≤β∞是非负常数,φ1(x)∈Llso/cp(Ω),φ2(x)∈Lslo/c(p-1)(Ω),1psn。设Kψp,θ(Ω)={v∈W1,p(Ω):v≥ψ,a.e.Ω,v-θ∈W01,p(Ω)},ψ为定义于Ω取值于R∪{±∞}的障碍函数,θ∈W01,p(Ω)为边值。利用Sobolev空间的不等式及嵌入引理,得到了如下局部可积性结果:若0≤ψ∈Wl1o,cs(Ω),则Kψp,θ-障碍问题的解u∈Llso*c(Ω),s*=nn-ss。本结果可看成是高红亚,田会英的结果的推广。  相似文献   

8.
令Ωn×n记体Ω上的所有n×n矩阵的集合.对于一个固定的A∈Ωn×n,若正整数k=min{l|Al+1X=Al对某个X∈Ωn×n},则称k为A的指标.如果X∈Ωn×n满足下面的方程组AX=XA,X2A=X,Ak+1X=Ak,其中k为A的指标,则称X为A的Drazin逆,当k=1时,A#=AD被称为A的群逆.Ωn×n的某些分块矩阵的Drazin逆和群逆的存在性和表示被给出.  相似文献   

9.
设IF是域,V是或者域IF上所有m×n矩阵的空间或者是特征不为2及3的域IF上所有n×n对称矩阵的空间.对于每个被固定的正整数s≥2,Qs定义V×V中满足rank(A+B)=rank(A)+rank(B)≤s的所有矩阵对(A,B)的集合.刻划了V上满足ψ(Qs)(∈)Qs的加法映射ψ.当charIF≠2时,也描述了IF上从n×n矩阵空间到p×q矩阵空间保秩加性的线性算子的结构.  相似文献   

10.
反对称矩阵空间行列式保持映射   总被引:1,自引:0,他引:1  
令SKn(R)为实数域R上所有n×n反对称矩阵构成的空间,研究SKn(R)上行列式的保持映射.并且当满足下列情况之一时,对它进行了刻画.1. det(A+λB)=det((A)+λ(B) ) A,B∈SKn(R) λ∈R2. 是满射且对两个特殊的λ有det(A+λB)=det((A)+λ(B) ) A,B∈SKn(R)3. 是加法映射且detA=det((A) ) A∈SKn(R)  相似文献   

11.
对于体上n阶方阵A,称满足方程AXA=A,XAX=X,AX=XA的n阶方阵X为矩阵A的群逆。分块矩阵的群逆的存在性和表达式的研究不仅有重要的理论意义,而且有广泛的应用价值。分块矩阵(CAB0)的群逆存在性和表达式是一个未解决的问题。主要给出体上分块矩阵(CAB0)(其中A,B群逆存在且C=±(A+B),或者A,B群逆存在且C=±(A-B))的群逆存在的充分必要条件和表达式。  相似文献   

12.
域上2×2对称矩阵空间的加法秩保持   总被引:5,自引:2,他引:3  
令F是一个域,n是一个正整数.Sn(F)记F上所有n×n对称矩阵的集合.若一个算子fSn(F)→Sn(F)满足对任意的A,B∈Sn(F)都有f(A+B)=f(A)+f(B),则称之为加法的;若对任意的X∈Sn(F)都有rankf(X)=rankX,则称f为Sn(F)上的秩保持.当n≥3及F为任意域时,Sn(F)上的所有加法秩保持已被作者在[4]中确定.这里,对于任意的F,S2(F)上所有的满足对每个X∈S2(F)\{xD12|x∈F\{0}}都有rankf(X)=rankX的加法算子的一般形式被确定,由此S2(F)上的所有加法秩保持被刻划.  相似文献   

13.
设P为一给定的对称正交矩阵,记AAnp={A∈Rn×n‖AT=-A,(PA)T=-PA}.讨论下列问题问题Ⅰ给定X,B∈Rn×m.求A∈AARnp使‖AX-B‖=min.问题Ⅱ设A∈Rn×n,求A*∈SE使‖A-A*‖=infA∈SE ‖A-A‖,其中SE为问题Ⅰ的解集合,‖·‖表示Frobenius范数.研究AARnp中元素的通式,给出问题Ⅰ解的一般表达式,证明了问题Ⅱ存在唯一逼近解A*,且得到了此解的具体表达式.  相似文献   

14.
矩阵空间之间的秩的线性保持   总被引:1,自引:0,他引:1  
设m,n是正整数,n≥2,F是包含至少三个元素的域.Mn(F)记F上所有n阶矩阵构成的线性空间,Sn(F)记F上所有n阶对称矩阵构成的线性空间.设V和W是Mn(F)的两个子空间.如果线性算子fV→W满足rankf(X)=rankX对于所有的X∈V成立,则称f是从V到W的秩的线性保持.证明了f是从Sn(F)到Mm(F)的秩的线性保持的充分必要条件是n≤m且存在非奇异矩阵U,V∈Mm(F)满足f(A)=U(A+0)V对于所有的A∈Sn(F)成立.由此,确定了所有的从Sn(F)到Sm(F)及从Mn(F)到Mm(F)的秩的线性保持的一般形式.  相似文献   

15.
令M-1记所有n×n逆M-矩阵的集合,Sk记所有实矩阵其每个kk主子矩阵都是逆M-矩阵的集合.首先证得如果A,BM-1分别是上、下Hessenberg矩阵,则对任意H1,H2S2,AoB和(AoH1)o(BoH2)都是三对角线矩阵(因而是完全非负矩阵);其次证得如果A=(Aij),B=(bij)M-1满足对任意i-j3,aji=bij=0,则对任意H1,H2S3,AoB和(AoH1)o(BoH2)都是五对角线逆M-矩阵.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号