首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
K H Jakobs  K Aktories  G Schultz 《Nature》1983,303(5913):177-178
The cyc- variants of S49 lymphoma cells have served as powerful tools for studying the components and mechanisms of hormone-induced adenylate cyclase stimulation, as these cells are deficient in the guanine nucleotide regulatory site (Ns) mediating hormone, guanine nucleotide, cholera toxin and fluoride-induced stimulations of the enzyme. Because of this deficiency, membranes of these cells have been used for reconstitution of the system by inserting the coupling component derived from other cell types. The hormone-sensitive adenylate cyclase is not only stimulated by hormones but can also be inhibited by a wide variety of hormones and neurotransmitters, and there is some evidence that hormonal inhibition may be mediated by a distinct guanine nucleotide regulatory site. Studies in cyc- cells lacking a functional Ns may therefore answer this unresolved, important question. We have recently observed that stable GTP analogues can inhibit cyc- adenylate cyclase stimulated by purified, preactivated Ns or forskolin, which can activate adenylate cyclase even in the absence of a functional Ns (ref. 10). The data indicated that these Ns-deficient cells contain an inhibitory guanine nucleotide site, Ni. To strengthen this concept, we investigated whether the cyc- adenylate cyclase can be inhibited by a hormone. We report here that somatostatin decreases cyclic AMP levels in cyc- cells, inhibits the forskolin-stimulated adenylate cyclase and causes a concomitant increase in a high affinity GTPase activity in cyc- membranes. The data strongly suggest that both the hormone- and guanine nucleotide-induced adenylate cyclase inhibitions in cyc- cells are mediated by Ni and that the mechanisms of activation and inactivation of Ni are similar to those established for Ns.  相似文献   

2.
Cloning of bovine GAP and its interaction with oncogenic ras p21   总被引:122,自引:0,他引:122  
The plasma membrane-bound mammalian ras proteins of relative molecular mass 21,000 (ras p21) share biochemical and structural properties with other guanine nucleotide-binding regulatory proteins (G-proteins). Oncogenic ras p21 variants result from amino acid substitutions at specific positions that cause p21 to occur predominantly complexed to GTP in vivo. Recently, a GTPase activating protein (GAP) with cytosolic activity has been discovered that stimulates the GTPase activity of normal but not of oncogenic ras p21. GAP might be either a negative regulatory agent which acts further upstream in the regulatory pathway or the downstream target of ras p21. We have identified a protein from bovine brain with apparent relative molecular mass 125,000 that has GAP activity. Here, using pure GAP in a kinetic competition assay, we show that GAP interacts preferentially with the active GTP complexes of both normal and oncogenic Harvey (Ha) ras p21 compared with the inactive GDP complexes. We also report the cloning and sequencing of the complementary DNA for bovine GAP. Regions of GAP share amino acid similarity with the noncatalytic domain of adenylate cyclase from the yeast Saccharomyces cerevisiae and with regions conserved between phospholipase C-148, the crk oncogene product and the nonreceptor tyrosine kinases.  相似文献   

3.
M Noda  M Ko  A Ogura  D G Liu  T Amano  T Takano  Y Ikawa 《Nature》1985,318(6041):73-75
The growth-promoting and/or differentiation-blocking activities of Kirsten (Ki-MSV) or Harvey murine sarcoma virus (Ha-MSV) on various types of cells in vitro are well documented. Here we report an unexpected effect of these viruses on a rat phaeochromocytoma cell line, PC12. PC12 cells, which multiply indefinitely in growth medium, are known to respond to nerve growth factor (NGF) by cessation of cell division and expression of several properties resembling those of differentiated sympathetic neurones. We have found that Ki- and Ha-MSV mimic some, if not all, of the activities of NGF in PC12 cells, and there is evidence that the viral oncogenes, v-Ki-ras and v-Ha-ras, are responsible for this phenomenon. This system may be of value for studying the mechanism of action of the v-ras genes as well as the regulatory mechanism of growth and differentiation in neuronal cells.  相似文献   

4.
Adenylyl cyclases are under positive and negative control by guanine nucleotides and hormones. Stimulatory responses are mediated by a guanine nucleotide- and Mg-binding regulatory component (Ns), a protein that has been purified to homogeneity. Inhibitory responses have been hypothesized to be mediated by an analogous regulatory component (Ni) distinct from Ns, but definitive proof for this is lacking and these effects may result from modulation of Ns activity. Recently, Bordetella pertussis toxin has been shown to ADP-ribosylate a peptide that is not part of Ns, and this coincides with attenuation of hormonal inhibition of adenylyl cyclase. We show here that cyc- S49 cells contain a substrate for ADP-ribosylation by pertussis toxin and that the toxin alters GTP dependent inhibition of cyc- adenyl cyclase activity. As cyc- S49 cells do not contain Ns by several criteria, we conclude that Ni is a distinct and separate regulatory component of adenylyl cyclase.  相似文献   

5.
Many receptors, in response to ligand activation, trigger inositol phospholipid breakdown, which leads to rapid intracellular responses. The sustained activation of this pathway is believed to be at least one of the factors involved in the stimulation of cell growth and there has been much speculation that certain oncogenes use this pathway to effect uncontrolled cellular proliferation. It has been suggested, by analogy with the receptor-mediated control of adenylate cyclase, that the receptor stimulation of inositol phospholipid metabolism is mediated through a guanine nucleotide regulatory protein (G-protein) called Gp (or Np). Although such a species has not been identified, there is now strong experimental evidence that this process is mediated by a G-protein distinct from the stimulatory and inhibitory G-proteins (Gs and Gi, respectively). The ras genes code for a plasma membrane protein, p21, whose only known biochemical property is a high-affinity GTPase activity. We show here that the expression of normal p21N-ras in NIH 3T3 fibroblasts leads to the coupling of certain growth factor receptors to stimulated inositol phosphate production. We propose that the N-ras proto-oncogene encodes a protein which couples the receptors for certain growth factors to the stimulation of phospholipase C. Thus, N-ras p21 may be the putative Gp or a functionally related protein.  相似文献   

6.
C Calés  J F Hancock  C J Marshall  A Hall 《Nature》1988,332(6164):548-551
About 30% of human tumours contain a mutation in one of the three ras genes leading to the production of p21ras oncoproteins that are thought to make a major contribution to the transformed phenotype of the tumour. The biochemical mode of action of the ras proteins is unknown but as they bind GTP and GDP and have an intrinsic GTPase activity, they may function like regulatory G proteins and control cell proliferation by regulating signal transduction pathways at the plasma membrane. It is assumed that an external signal is detected by a membrane molecule (or detector) that stimulates the conversion of p21.GDP to p21.GTP which then interacts with a target molecule (or effector) to generate an internal signal. Recently a cytoplasmic protein, GAP, has been identified that interacts with the ras proteins, dramatically increasing the GTPase activity of normal p21 but not of the oncoproteins. We report here that GAP appears to interact with p21ras at a site previously identified as the 'effector' site, strongly implicating GAP as the biological target for regulation by p21.  相似文献   

7.
Botulinum C2 toxin ADP-ribosylates actin   总被引:45,自引:0,他引:45  
ADP-ribosylation of regulatory proteins is an important pathological mechanism by which various bacterial toxins affect eukaryotic cell functions. While diphtheria toxin catalyses the ADP-ribosylation of elongation factor 2, which results in inhibition of protein synthesis, cholera toxin and pertussis toxin ADP-ribosylate Ns and Ni, respectively, the GTP-binding regulatory components of the adenylate cyclase system, thereby modulating the bidirectional hormonal regulation of the adenylate cyclase. Botulinum C2 toxin is another toxin which has been reported to possess ADP-ribosyltransferase activity. This extremely toxic agent is produced by certain strains of Clostridium botulinum and induces hypotension, an increase in intestinal secretion, vascular permeability and haemorrhaging in the lungs. In contrast to botulinum neurotoxins, the botulinum C2 toxin apparently lacks any neurotoxic effects. Here we report that botulinum C2 toxin ADP-ribosylates a protein of relative molecular mass 43,000 (43K) in intact cells and in cell-free preparations. We present evidence that the 43K protein substrate is actin, which is apparently mono-ADP-ribosylated by the toxin. Botulinum C2 toxin also ADP-ribosylated purified liver G-actin, whereas liver F-actin was only poorly ADP-ribosylated and skeletal muscle actin was not ADP-ribosylated in either its G form or its F form. ADP-ribosylation of liver G-actin by botulinum C2 toxin resulted in a drastic reduction in viscosity of actin polymerized in vitro.  相似文献   

8.
Receptor-mediated activation of both adenylate cyclase and phosphatidylinositide hydrolysis systems occurs through guanine nucleotide regulatory proteins and ultimately leads to specific activation of either cyclic AMP-dependent protein kinase A or Ca2+/phospholipid-dependent protein kinase C. Given the remarkable diversity of agents that influence cellular metabolism through these pathways and the similarities of their components, interactions between the two signalling systems could occur. In fact, stimulation of cells with 12-O-tetradecanoyl phorbol-13-acetate (TPA), a phorbol ester that activates protein kinase C, influences hormone-sensitive adenylate cyclase. In some cells TPA induces desensitization of receptor-mediated stimulation of adenylate cyclase, whereas in others, such as frog erythrocytes, phorbol ester treatment results in increased agonist-stimulated as well as basal, guanine nucleotide- and fluoride ion-stimulated adenylate cyclase activities. We show here that TPA produces phosphorylation of the catalytic unit of adenylate cyclase in frog erythrocytes. Moreover, purified protein kinase C can directly phosphorylate in vitro the catalytic unit of adenylate cyclase purified from bovine brain. These results suggest that phosphorylation of the catalytic unit of adenylate cyclase by protein kinase C may be involved in the phorbol ester-induced enhancement of adenylate cyclase activity. In addition to providing the first direct demonstration of a covalent modification of the catalytic unit of adenylate cyclase, these results provide a potential biochemical mechanism for a regulatory link between the two major transmembrane signalling systems.  相似文献   

9.
The ras proto-oncogene, found in all eukaryotes so far examined, encode s a protein with guanine nucleotide-binding and GTPase activity. Gene disruption experiments in yeast indicate that ras is essential for cell growth. Anit-sense mutagenesis approaches suggest that this is also true for Dictyostelium. Most mutations causing an amino-acid substitution for Gly 12 result in decreased GTPase activity and produce a transforming phenotype. In yeast, a Gly 19---- Val 19, missense mutation (Gly 19 is similar to Gly 12 in mammalian and Dictyostelium ras proteins) causes a series of dominant phenotypes, including elevated adenylate cyclase activity. In mammalian cells there is no evidence that ras activates adenylate cyclase activity. D. discoideum contains a single ras gene (Dd-ras) that encodes a protein very similar to the mammalian ras protein and identical to c-ras at the potentially transforming positions. Dd-ras is expressed in vegetative cells and later in development in prestalk cells whereas ras protein is found in vegetative and developing cells. In the migrating pseudoplasmodium, ras protein is found in prestalk but not prespore cells, suggesting it is involved in the function and/or differentiation of the anteriorly localized prestalk cells. In this report we examine the effects of expression of a Dd-ras gene carrying a Gly-12----Thr 12 missense mutation.  相似文献   

10.
C A Landis  S B Masters  A Spada  A M Pace  H R Bourne  L Vallar 《Nature》1989,340(6236):692-696
A subset of growth hormone-secreting human pituitary tumours carries somatic mutations that inhibit GTPase activity of a G protein alpha chain, alpha(s). The resulting activation of adenylyl cyclase bypasses the cells' normal requirement for trophic hormone. Amino acids substituted in the putative gsp oncogene identify a domain of G protein alpha-chains required for intrinsic ability to hydrolyse GTP. This domain may serve as a built-in counter-part of the separate GTPase-activating proteins required for GTP hydrolysis by small GTP-binding proteins such as p21ras.  相似文献   

11.
Yeast and mammalian ras proteins have conserved biochemical properties   总被引:2,自引:0,他引:2  
Mammalian ras oncogenes encode polypeptides of relative molecular mass (Mr) 21,000 (p21) which bind GTP and GDP. Oncogenic ras-encoded proteins differ from their normal homologues by an amino acid substitution for Gly 12, Ala 59 or Gln 61. Recently, we and others have observed that normal p21, encoded by the Ha-ras gene, has a GTP hydrolytic activity that is reduced by the oncogenic substitutions Val 12 or Thr 59. The yeast Saccharomyces cerevisiae contains two ras-related genes, RASsc1 and RASsc2, the expression of either of which is sufficient for viability. RASsc1 and RASsc2 encode proteins of 309 (SC1) and 322 (SC2) residues which are 62% homologous to mammalian p21 in their 172-amino acid N-terminal sequences. We report here that the N-terminal domain of SC1 binds GTP and GDP and has a GTP hydrolytic activity that is reduced in the variants SC1[Thr 66] and SC1[Leu 68] which are analogous to oncogenic Ha[Thr 59] and Ha[Leu 61], respectively. These results suggest that yeast and mammalian ras proteins have similar biochemical and possibly biological functions.  相似文献   

12.
J Harford 《Nature》1984,311(5987):673-675
There is substantial evidence implicating ras genes in a number of human neoplasms. The ras genes of several human tumours display mutational changes which are likely to be responsible for their transforming activity. Normal cells also express ras genes, over-expression of which can induce cellular transformation. ras genes encode proteins of approximately 21,000 molecular weight (MW) (p21) that are localized to the inner surface of the plasma membrane. Much effort is being focused on the elucidation of the physiological function of ras-encoded proteins in normal and transformed cells, concentrating on interactions between p21 and other cellular elements. Recently, Finkel and Cooper reported that p21 in extracts of human bladder carcinoma cells is involved in a molecular complex with the transferrin receptor of these cells. This report aroused considerable interest, particularly as expression of the transferrin receptor has been linked to cell proliferation. I present here evidence that the apparent association of p21 and the transferrin receptor is an artefact of the immunoprecipitation technique.  相似文献   

13.
Co-capping of ras proteins with surface immunoglobulins in B lymphocytes   总被引:8,自引:0,他引:8  
L Graziadei  K Riabowol  D Bar-Sagi 《Nature》1990,347(6291):396-400
Cellular ras genes encode a family of membrane-associated proteins (p21ras) that bind guanine nucleotide and possess a low intrinsic GTPase activity. The p21ras proteins are ubiquitously expressed in mammalian cells and are thought to be involved in a growth-promoting signal transduction pathway; their mode of action, however, remains unknown. The ligand-induced movement of cell-surface receptors seems to be a primary event in the transduction of several extracellular signals that control cell growth and differentiation. In B lymphocytes, surface immunoglobulin receptors crosslinked by antibody or other multivalent ligands form aggregates called patches, which then collect into a single assembly, a cap, at one pole of the cell. This process constitutes the initial signal for the activation of a B cell. Here we show by immunofluorescence microscopy that p21ras co-caps with surface immunoglobulin molecules in mouse splenic B lymphocytes. In contrast, no apparent change in the distribution of p21ras occurs during the capping of concanavalin A receptors. The redistribution of p21ras is apparent at the early stages (patching) of immunoglobulin capping and is inhibited by metabolic inhibitors and the cytoskeleton-disrupting agents colchicine and cytochalasin D. The distribution of another membrane-associated guanine nucleotide-binding regulatory protein, the Gi alpha subunit, is not affected by surface immunoglobulin capping. These findings demonstrate that p21ras can migrate in a directed manner along the plasma membrane and suggest that p21ras may be a component of the signalling pathway initiated by the capping of surface immunoglobulin in B lymphocytes.  相似文献   

14.
T Kamata  J R Feramisco 《Nature》1984,310(5973):147-150
Several human tumour cell lines contain genes that can transform NIH 3T3 cells into malignant cells. Certain genes have been classified as members of the ras oncogene family, namely, Ha-ras, Ki-ras or N-ras. The proteins encoded by the ras family are generally small (Ha-ras, for example, encodes a protein of molecular weight 21,000 named p21), and are associated with the inner surface of the plasma membrane. The only known biochemical property common to all forms of the ras proteins is the ability to bind guanine nucleotides, a property which may be closely related to the transforming ability of ras proteins. A GTP-dependent, apparent autophosphorylation (on threonine 59) activity has been identified only in the case of the v-Ha-ras protein. Although the role of these biochemical activities in the transformation process remains unclear, we have initiated studies to determine the possible biochemical interactions of ras proteins with other membrane components. We report here the evidence that epidermal growth factor enhances the guanine nucleotide binding activity of activated c-Ha-ras or v-Ha-ras p21, and phosphorylation of v-Ha-ras p21, suggesting that some mitogenic growth factors may regulate those activities.  相似文献   

15.
J C Lacal  J Moscat  S A Aaronson 《Nature》1987,330(6145):269-272
Genes involved in the transduction of signals required for normal cell proliferation commonly appear to be subverted in the neoplastic process. One such group is the highly conserved family of ras genes, which have been detected as transforming genes in a wide variety of naturally occurring tumours. By analogy with other known G proteins, the p21 proteins encoded by ras genes may act as regulatory proteins in the transduction of signals that lead to DNA synthesis. A major pathway involved in the DNA synthesis induced by growth factors is mediated by phosphatidylinositol turnover: cleavage of phosphoinositides by phospholipase C produces 1,2-diacylglycerol, and inositol phosphates. The former acts as an essential cofactor for protein kinase C (ref. 4), and inositol-(1,4,5)-triphosphate mobilizes Ca2+ from non-mitochondrial intracellular stores. We demonstrate a reproducible increase in 1,2-diacylglycerol, in the absence of a detectable increase in inositol phosphates, in transformed cells containing Ha-ras oncogenes and with different membrane targeting signals for the ras p21 protein. These findings suggest that a source other than phosphoinositides exists for the generation of 1,2-diacylglycerol and that the Ha-ras oncogene specifically activates this novel pathway for 1,2-diacylglycerol production.  相似文献   

16.
G Bollag  F McCormick 《Nature》1991,351(6327):576-579
The ras-encoded p21ras proteins bind GTP very tightly, but catalyse hydrolysis to GDP very slowly. In humans, two genes encode proteins that stimulate this GTPase activity (GAP, or GTPase-activating proteins), one of relative molecular mass 120,000, referred to as p120-GAP, and another NF1-GAP, which is encoded by the neurofibromatosis type-1 gene. Both GAPs are widely expressed in mammalian tissues. Here we show that although they will both bind oncogenic mutants of p21ras, neither will stimulate their GTPase activity. NF1-GAP binds to the p21ras proteins up to 300 times more efficiently than p120-GAP. The two GAPs are inhibited to different extents by certain lipids: micromolar concentrations of arachidonate, phosphatidate and phosphatidylinositol-4,5-bisphosphate affect only NF1-GAP. This inhibition does not compete with p21ras, and lipid-inactivated NF1-GAP can still bind p21ras. We used the detergent dodecyl maltoside, which inhibits only NF1-GAP, to distinguish between the two activities in cell extracts and found both types present together in several mammalian cell lines. In contrast, GAP activity in extracts of Xenopus oocytes was not affected by dodecyl maltoside. By these criteria, the mammalian cells contain both GAP activities and the oocytes have only p120-like GAP activity. These results indicate that more than one GAP regulates p21ras in the same cell.  相似文献   

17.
18.
One of the most commonly found transforming ras oncogenes in human tumours has a valine codon replacing the glycine codon at position 12 of the normal c-Ha-ras gene. To understand the structural reasons behind cell transformation arising from this single amino acid substitution, we have determined the crystal structure of the GDP-bound form of the mutant protein, p21(Val-12), encoded by this oncogene. We report here the overall structure of p21(Val-12) at 2.2 A resolution and compare it with the structure of the normal c-Ha-ras protein. One of the major differences is that the loop of the transforming ras protein that binds the beta-phosphate of the guanine nucleotide is enlarged. Such a change in the 'catalytic site' conformation could explain the reduced GTPase activity of the mutant, which keeps the protein in the GTP bound 'signal on' state for a prolonged period time, ultimately causing cell transformation.  相似文献   

19.
L Vallar  A Spada  G Giannattasio 《Nature》1987,330(6148):566-568
Gs and Gi are guanine nucleotide-binding, heterotrimer proteins that regulate the activity of adenylate cyclase, and are responsible for transferring stimulatory and inhibitory hormonal signals, respectively, from cell surface receptors to the enzyme catalytic unit. These proteins can be directly activated by agents such as GTP and analogues, fluoride and magnesium. Decreased amounts of Gs and Gi, and even the absence of Gs, have been described, whereas an altered Gs has been reported in a cultured cell line (UNC variant of S49 lymphoma cells), but has never been observed in human disease states. We have found a profoundly altered Gs protein in a group of human growth hormone-secreting pituitary adenomas, characterized by high secretory activity and intracellular cyclic AMP levels. In the membranes from these tumours no stimulation of adenylate cyclase activity by growth hormone-releasing hormone, by GTP or by fluoride was observed. Indeed, the last two agents caused an inhibition, probably mediated by Gi. In contrast, adenylate cyclase stimulation by Mg2+ was enormously increased. This altered pattern of adenylate cyclase regulation was reproduced when a cholate extract of the tumour membranes (which contains G proteins) was reconstituted with Gs-free, cyc- S49 cell membranes. Inasmuch as secretion from somatotrophic cells is known to be a cAMP-dependent function, the alteration of Gs could be the direct cause of the high secretory activity of the tumours in which it occurs.  相似文献   

20.
C Ellis  M Moran  F McCormick  T Pawson 《Nature》1990,343(6256):377-381
The critical pathways through which protein-tyrosine kinases induce cellular proliferation and malignant transformation are not well defined. As microinjection of antibodies against p21ras can block the biological effects of both normal and oncogenic tyrosine kinases, it is likely that they require functional p21ras to transmit their mitogenic signals. No biochemical link has been established, however, between tyrosine kinases and p21ras. We have identified a non-catalytic domain of cytoplasmic tyrosine kinases, SH2, that regulates the activity and specificity of the kinase domain. The presence of two adjacent SH2 domains in the p21ras GTPase-activating protein (GAP) indicates that GAP might interact directly with tyrosine kinases. Here we show that GAP, and two co-precipitating proteins of relative molecular masses 62,000 and 190,000 (p62 and p190) are phosphorylated on tyrosine in cells that have been transformed by cytoplasmic and receptor-like tyrosine kinases. The phosphorylation of these polypeptides correlates with transformation in cells expressing inducible forms of the v-src or v-fps encoded tyrosine kinases. Furthermore, GAP, p62 and p190 are also rapidly phosphorylated on tyrosine in fibroblasts stimulated with epidermal growth factor. Our results suggest a mechanism by which tyrosine kinases might modify p21ras function, and implicate GAP and its associated proteins as targets of both oncoproteins and normal growth factor receptors with tyrosine kinase activity. These data support the idea that SH2 sequences direct the interactions of cytoplasmic proteins involved in signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号