首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The yeast prions represent a very attractive and tractable model for investigating the prion world. The more extensively studied yeast prion [PSI] leads to a propagation model that links auto-aggregation in amyloid formation and inactivation of the cellular function of the yeast 'prion protein' Sup35p. The other prion model, [URE3], appears to be similar in some genetic and biochemical properties. The characterisation of both Sup35p and Ure2p, the two 'prion proteins', mainly focusing on their aggregation properties, support this model. However, some important differences still exist that should be examined carefully. In particular, we have shown that Ure2p aggregation in vivo (monitored by fluorescence of Ure2-GFP fusion) does not necessarily give rise to a [URE3] phenotype. Comparisons of these two systems as well as more recent experiments are discussed in this review.  相似文献   

2.
From Creutzfeldt-Jakob disease (CJD) to variant CJD through Gerstmann-Str?ussler-Scheinker syndrome, kuru and fatal familial insomnia, the journey leading to current understanding of the basic aspects of human prion diseases has been full of unexpected, but often dramatic and always fascinating twists. Recent progress in modeling prion diseases and characterization of the various prion protein forms reveal that such a wide spectrum of the diseases is associated with the chameleon-like conformational features of prions.  相似文献   

3.
Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.  相似文献   

4.
Prion diseases are neurodegenerative disorders associated with a conformational conversion of the prion PrP protein, in which the β-strand content increases and that of the α helix decreases. However, the structure of the pathogenous form PrPSc, occurring after conformational conversion of the normal cellular form PrPC, is not yet known. From sequence analysis, we have previously proposed that helix H2 of the prion PrPC structure might be a key region for this structural conversion. More recently, we identified the TATA box-binding protein fold as a putative scaffold that may locally satisfy the predicted secondary-structure organisation of PrPSc. In the present analysis, we detail the schematic construction of PrPSc monomeric and dimeric models, based on this hypothesis. These models are globally compatible with available data and therefore may provide further insights into the structurally and functionally elusive PrP protein. Some comments are also devoted to a comparison of the yeast Ure2p prion and animal prions. Received 29 July 2002; received after revision 24 October 2002; accepted 24 October 2002 RID="*" ID="*"Corresponding author.  相似文献   

5.
A number of human diseases have been shown to be associated with mutation in the genes encoding leucine-rich-repeat (LRR)-containing proteins. They include 16 different LRR proteins. Mutations of these proteins are associated with 19 human diseases. The mutations occur frequently within the LRR domains as well as their neighboring domains, including cysteine clusters. Here, based on the sequence analysis of the LRR domains and the known structure of LRR proteins, we describe some features of different sequence variants and discuss their adverse effects. The mutations in the cysteine clusters, which preclude the formation of sulfide bridges or lead to a wrong paring of cysteines in extracellular proteins or extracellular domains, occur with high frequency. In contrast, missense mutations at some specific positions in LRRs are very rare or are not observed at all. Received 4 May 2005; received after revision 18 August 2005; accepted 1 September 2005  相似文献   

6.
The physical nature of the agent that causes transmissible spongiform encephalopathies (the 'prion'), is the subject of passionate controversy. Investigation of it has benefited tremendously from the use of transgenic and knockout technologies. However, prion diseases present several other enigmas, including the mechanism of brain damage and how the affinity of the agent for the central nervous system is controlled. Here we show that such questions can be effectively addressed in transgenic and knockout systems, and that pathogenesis may be clarified even before we can be certain about the nature of the infectious agent. Availability of mice overexpressing the Prnp gene (which encodes the normal prion protein) and Prnp knockout mice allows for selective reconstitution experiments aimed at expressing PrP in specific portions of the brain or in selected populations of hemato- and lymphopoietic origin. We summarize how such studies can offer insights into how prions administered to peripheral sites can gain access to central nervous tissue, and into the molecular requirements for spongiform brain damage.  相似文献   

7.
Understanding the molecular mechanisms controlling the association of proteins with lipid rafts is a central issue in cell biology and medicine. A structurally conserved motif (the 'sphingolipid binding domain') has been characterized in unrelated cellular and microbial proteins targeted to lipid rafts. I propose that the structuration of a sphingolipid shell around the sphingolipid binding domain not only extracts the protein from the liquid-disordered phase of the plasma membrane, and ensures its delivery to lipid rafts, but also influences its conformation. The chaperone activity of sphingolipids in shells and rafts may play an important role in infectious and conformational diseases(human immunodeficiency virus-1, prions, Alzheimer).  相似文献   

8.
Alpha-synuclein and Parkinson's disease   总被引:6,自引:0,他引:6  
The involvement of alpha-synuclein in neurodegenerative diseases was first suspected after the isolation of an alpha-synuclein fragment (NAC) from amyloid plaques in Alzheimer's disease (AD). Later, two different alpha-synuclein mutations were shown to be associated with autosomal-dominant Parkinson's disease (PD), but only in a small number of families. However, the discovery that alpha-synuclein is a major component of Lewy bodies and Lewy neurites, the pathological hallmarks of PD, confirmed its role in PD pathogenesis. Pathological aggregation of the protein might be responsible for neurodegeneration. In addition, soluble oligomers of alpha-synuclein might be even more toxic than the insoluble fibrils found in Lewy bodies. Multiple factors have been shown to accelerate alpha-synuclein aggregation in vitro. Therapeutic strategies aimed to prevent this aggregation are therefore envisaged. Although little has been learned about its normal function, alpha-synuclein appears to interact with a variety of proteins and membrane phospholipids, and may therefore participate in a number of signaling pathways. In particular, it may play a role in regulating cell differentiation, synaptic plasticity, cell survival, and dopaminergic neurotransmission. Thus, pathological mechanisms based on disrupted normal function are also possible.  相似文献   

9.
Protein misfolding and aggregation into fibrillar deposits is a common feature of a large group of degenerative diseases affecting the central nervous system or peripheral organs, termed protein misfolding disorders (PMDs). Despite their established toxic nature, clinical trials aiming to reduce misfolded aggregates have been unsuccessful in treating or curing PMDs. An interesting possibility for disease intervention is the regular intake of natural food or herbal extracts, which contain active molecules that inhibit aggregation or induce the disassembly of misfolded aggregates. Among natural compounds, phenolic molecules are of particular interest, since most have dual activity as amyloid aggregation inhibitors and antioxidants. In this article, we review many phenolic natural compounds which have been reported in diverse model systems to have the potential to delay or prevent the development of various PMDs, including Alzheimer’s and Parkinson’s diseases, prion diseases, amyotrophic lateral sclerosis, systemic amyloidosis, and type 2 diabetes. The lower toxicity of natural compounds compared to synthetic chemical molecules suggest that they could serve as a good starting point to discover protein misfolding inhibitors that might be useful for the treatment of various incurable diseases.  相似文献   

10.
Protein misfolding and disease: the case of prion disorders   总被引:2,自引:0,他引:2  
Recent findings strongly support the hypothesis that diverse human disorders, including the most common neurodegenerative diseases, arise from misfolding and aggregation of an underlying protein. Despite the good evidence for the involvement of protein misfolding in disease pathogenesis, the mechanism by which protein conformational changes participate in the disease is still unclear. Among the best-studied diseases of this group are the transmissible spongiform encephalopathies or prion-related disorders, in which misfolding of the normal prion protein plays a key role in the disease. In this article we review recent data on the link between prion protein misfolding and the pathogensis of spongiform encephalopathies. Received 15 July 2002; received after revision 19 August 2002; accepted 23 August 2002 RID="*" ID="*"Corresponding author.  相似文献   

11.
The accumulation and aggregation of misfolded proteins is the primary hallmark for more than 45 human degenerative diseases. These devastating disorders include Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis. Over 15 degenerative diseases are associated with the aggregation of misfolded proteins specifically in the nucleus of cells. However, how the cell safeguards the nucleus from misfolded proteins is not entirely clear. In this review, we discuss what is currently known about the cellular mechanisms that maintain protein homeostasis in the nucleus and protect the nucleus from misfolded protein accumulation and aggregation. In particular, we focus on the chaperones found to localize to the nucleus during stress, the ubiquitin–proteasome components enriched in the nucleus, the signaling systems that might be present in the nucleus to coordinate folding and degradation, and the sites of misfolded protein deposition associated with the nucleus.  相似文献   

12.
Prion diseases are fatal transmissible neurodegenerative diseases, characterized by aggregation of the pathological form of prion protein, spongiform degeneration, and neuronal loss, and activation of astrocytes and microglia. Microglia can clear prion plaques, but on the other hand cause neuronal death via release of neurotoxic species. Elevated expression of the proinflammatory cytokine IL-1β has been observed in brains affected by several prion diseases, and IL-1R-deficiency significantly prolonged the onset of the neurodegeneration in mice. We show that microglial cells stimulated by prion protein (PrP) fibrils induced neuronal toxicity. Microglia and macrophages release IL-1β upon stimulation by PrP fibrils, which depends on the NLRP3 inflammasome. Activation of NLRP3 inflammasome by PrP fibrils requires depletion of intracellular K+, and requires phagocytosis of PrP fibrils and consecutive lysosome destabilization. Among the well-defined molecular forms of PrP, the strongest NLRP3 activation was observed by fibrils, followed by aggregates, while neither native monomeric nor oligomeric PrP were able to activate the NLRP3 inflammasome. Our results together with previous studies on IL-1R-deficient mice suggest the IL-1 signaling pathway as the perspective target for the therapy of prion disease.  相似文献   

13.
Expansion of amino acid homo-sequences, such as polyglutamines or polyalanines, in proteins has been directly implicated in various degenerative diseases through a mechanism of protein misfolding and aggregation. However, it is still unclear how the nature of the expansion and the protein context influence the tendency of a protein to aggregate. Here, we have addressed these questions using spinocerebellar ataxia type-3 (ATX3) protein, the best characterised of the polyglutamine proteins, chosen as a model system. Using a transfected mammalian cell line, we demonstrate that ATX3 aggregation is noticeably reduced by deletion or replacement of regions other than the polyglutamine tract. The nature of the amino acid homo-sequences also has a strong influence on aggregation. From our studies, we draw general conclusions on the effect of the protein architecture and of the amino acid homo-sequence on pathology. Received 3 March 2006; received after revision 19 April 2006; accepted 22 May 2006  相似文献   

14.
Endocytic budding implies the remodeling of a plasma membrane portion from a flat sheet to a closed vesicle. Clathrin- and actin-mediated endocytosis in yeast has proven a very powerful model to study this process, with more than 60 evolutionarily conserved proteins involved in fashioning primary endocytic vesicles. Major progress in the field has been made during the last decades by defining the sequential recruitment of the endocytic machinery at the cell cortex using live-cell fluorescence microscopy. Higher spatial resolution has been recently achieved by developing time-resolved electron microscopy methods, allowing for the first time the visualization of changes in the plasma membrane shape, coupled to the dynamics of the endocytic machinery. Here, we highlight these advances and review recent findings from yeast and mammals that have increased our understanding of where and how endocytic proteins may apply force to remodel the plasma membrane during different stages of the process.  相似文献   

15.
16.
Animal prion proteins (PrPs) form at the sequence level a very homogenous and 'closed' family. Therefore, few of their structural and functional features can be gleaned from sequence comparison as is now possible on a wide scale for other protein families. To detect putatively related proteins (at the structural and/or functional level), we used a battery of sequence analysis tools. This analysis resulted in (i) the identification of a putative 'prion-like' domain within the envelope of foamy retroviruses, (ii) the detection of putative similarities between prions and an interferon-inducible membrane protein, and (iii) the proposal that of the TATA-box-binding protein is a structural scaffold, which might allow understanding of a key event leading to the structural conversion from PrP(C) (normal cellular prion structure) towards PrP(Sc) (pathogenic structure).  相似文献   

17.
Prion protein, a misfolded isoform of which is the essential component of the agent of prion diseases, still remains an enigmatic protein whose physiological functions are at best hypothetical. To gain a better insight into its putative role, many studies were undertaken to look for molecules that bind prion protein, and have notably identified divalent metal ions, several proteins, and nucleic acids. At first sight, the diversity of prion protein’s ligands seems of little help to infer a plausible function. However, the intrinsically disordered property of its N-terminal tail and the potential of the protein to adopt a transmembrane topology, can both be taken into account to predict its different states during its cellular cycle and its possible functions, of which the most promising correspond to a general scavenger, a sensor or adaptor in a signaling cascade, and an RNA chaperone. Received 16 August 2006; received after revision 7 November 2006; accepted 13 December 2006  相似文献   

18.
Hsp70 is a highly conserved chaperone that in addition to providing essential cellular functions and aiding in cell survival following exposure to a variety of stresses is also a key modulator of prion propagation. Hsp70 is composed of a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). The key functions of Hsp70 are tightly regulated through an allosteric communication network that coordinates ATPase activity with substrate-binding activity. How Hsp70 conformational changes relate to functional change that results in heat shock and prion-related phenotypes is poorly understood. Here, we utilised the yeast [PSI +] system, coupled with SBD-targeted mutagenesis, to investigate how allosteric changes within key structural regions of the Hsp70 SBD result in functional changes in the protein that translate to phenotypic defects in prion propagation and ability to grow at elevated temperatures. We find that variants mutated within the β6 and β7 region of the SBD are defective in prion propagation and heat-shock phenotypes, due to conformational changes within the SBD. Structural analysis of the mutants identifies a potential NBD:SBD interface and key residues that may play important roles in signal transduction between domains. As a consequence of disrupting the β6/β7 region and the SBD overall, Hsp70 exhibits a variety of functional changes including dysregulation of ATPase activity, reduction in ability to refold proteins and changes to interaction affinity with specific co-chaperones and protein substrates. Our findings relate specific structural changes in Hsp70 to specific changes in functional properties that underpin important phenotypic changes in vivo. A thorough understanding of the molecular mechanisms of Hsp70 regulation and how specific modifications result in phenotypic change is essential for the development of new drugs targeting Hsp70 for therapeutic purposes.  相似文献   

19.
20.
Following the sequencing of the human genome and many other organisms, research on protein-coding genes and their functions (functional genomics) has intensified. Subsequently, with the observation that proteins are indeed the molecular effectors of most cellular processes, the discipline of proteomics was born. Clearly, proteins do not function as single entities but rather as a dynamic network of team players that have to communicate. Though genetic (yeast two-hybrid Y2H) and biochemical methods (co-immunoprecipitation Co-IP, affinity purification AP) were the methods of choice at the beginning of the study of protein–protein interactions (PPI), in more recent years there has been a shift towards proteomics-based methods and bioinformatics-based approaches. In this review, we first describe in depth PPIs and we make a strong case as to why unraveling the interactome is the next challenge in the field of proteomics. Furthermore, classical methods of investigation of PPIs and structure-based bioinformatics approaches are presented. The greatest emphasis is placed on proteomic methods, especially native techniques that were recently developed and that have been shown to be reliable. Finally, we point out the limitations of these methods and the need to set up a standard for the validation of PPI experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号