首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sarcomas are a heterogeneous group of tumors with mesenchymal origins. Sarcomas are broadly classified into bone and soft tissue sarcomas with over 50 subtypes. Despite recent advances in sarcoma classification and treatment strategies, the prognosis of some aggressive sarcoma types remains poor due to treatment infectiveness and development of drug resistance. A better understanding of sarcoma pathobiology will significantly increase the potential for the development of therapeutics and treatment strategies. Recently, expressions of microRNAs (miRNA), a class of small non-coding RNAs, have been found to be deregulated in many sarcomas and are implicated in sarcoma pathobiology. Comprehensive understanding of gene regulatory networks mediated by miRNAs in each sarcoma type and the conservation of some shared/conserved miRNA-gene networks could be potentially investigated in the prevention, diagnosis, prognosis and as multi-modal treatment options in these cancers. In this review, we will discuss the current knowledge of miRNA–gene regulatory networks in various sarcoma types and give a perspective of the complex multilayer miRNA-mediated gene regulation in sarcomas.  相似文献   

3.
MicroRNAs (miRNAs) are a recently discovered family of small regulatory molecules that function by modulating protein production. There are approximately 500 known mammalian miRNA genes, and each miRNA may regulate hundreds of different protein-coding genes. Mature miRNAs bind to target mRNAs in a protein complex known as the miRNA-induced silencing complex (miRISC), sometimes referred to as the miRNP (miRNA-containing ribonucleoprotein particles), where mRNA translation is inhibited or mRNA is degraded. These actions of miRNAs have been shown to regulate several developmental and physiological processes including stem cell differentiation, haematopoiesis, cardiac and skeletal muscle development, neurogenesis, insulin secretion, cholesterol metabolism and the immune response. Furthermore, aberrant expression has been implicated in a number of diseases including cancer and heart disease. The role of miRNAs in these developmental, physiological and pathological processes will be reviewed. Received 3 August 2007; received after revision 3 October 2007; accepted 5 October 2007  相似文献   

4.
MicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes.  相似文献   

5.
6.
7.
8.
9.
10.
Non-coding RNA (ncRNA) has been shown to regulate diverse cellular processes and functions through controlling gene expression. Long non-coding RNAs (lncRNAs) act as a competing endogenous RNAs (ceRNAs) where microRNAs (miRNAs) and lncRNAs regulate each other through their biding sites. Interactions of miRNAs and lncRNAs have been reported to trigger decay of the targeted lncRNAs and have important roles in target gene regulation. These interactions form complicated and intertwined networks. Certain lncRNAs encode miRNAs and small nucleolar RNAs (snoRNAs), and may regulate expression of these small RNAs as precursors. SnoRNAs have also been reported to be precursors for PIWI-interacting RNAs (piRNAs) and thus may regulate the piRNAs as a precursor. These miRNAs and piRNAs target messenger RNAs (mRNAs) and regulate gene expression. In this review, we will present and discuss these interactions, cross-talk, and co-regulation of ncRNAs and gene regulation due to these interactions.  相似文献   

11.
Polyamine-dependent gene expression   总被引:15,自引:0,他引:15  
The polyamines spermidine and spermine along with the diamine putrescine are involved in many cellular processes, including chromatin condensation, maintenance of DNA structure, RNA processing, translation and protein activation. The polyamines influence the formation of compacted chromatin and have a well-established role in DNA aggregation. Polyamines are used in the posttranslational modification of eukaryotic initiation factor 5A, which regulates the transport and processing of specific RNA. The polyamines also participate in a novel RNA-decoding mechanism, a translational frameshift, of at least two known genes, the TY1 transposon and mammalian antizyme. Polyamines are crucial for their own regulation and are involved in feedback mechanisms affecting both polyamine synthesis and catabolism. Recently, it has become apparent that the polyamines are able to influence the action of the protein kinase casein kinase 2. Here we address several roles of polyamines in gene expression.Received 27 November 2002; received after revision 9 January 2003; accepted 31 January 2003  相似文献   

12.
13.
14.
Modularity, feedback control, functional redundancy and bowtie architecture have been proposed as key factors that confer robustness to complex biological systems. MicroRNAs (miRNAs) are highly conserved but functionally dispensable. These antinomic properties suggest that miRNAs fine-tune gene expression rather than act as genetic switches. We synthesize published and unpublished data and hypothesize that miRNA pluripotentiality acts to buffer gene expression, while miRNA degeneracy tunes the expression of targets, thus providing robustness to gene expression networks. Furthermore, we propose a Lavallière-tie architecture by integrating signal transduction, miRNAs and protein expression data to model complex gene expression networks.  相似文献   

15.
MicroRNAs (miRNAs), a novel class of molecules regulating gene expression, have been hailed as modulators of many biological processes and disease states. Recent studies demonstrated an important role of miRNAs in the processes of inflammation and cancer, however, there are little data implicating miRNAs in peripheral pain. Bladder pain syndrome/interstitial cystitis (BPS/IC) is a clinical syndrome of pelvic pain and urinary urgency/frequency in the absence of a specific cause. BPS is a chronic inflammatory condition that might share some of the pathogenetic mechanisms with its common co-morbidities inflammatory bowel disease (IBD), asthma and autoimmune diseases. Using miRNA profiling in BPS and the information about validated miRNA targets, we delineated the signaling pathways activated in this and other inflammatory pain disorders. This review projects the miRNA profiling and functional data originating from the research in bladder cancer and immune-mediated diseases on the BPS-specific miRNAs with the aim to gain new insight into the pathogenesis of this enigmatic disorder, and highlighting the common regulatory mechanisms of pain and inflammation.  相似文献   

16.
Messenger RNA editing and the genetic code   总被引:3,自引:0,他引:3  
R Cattaneo 《Experientia》1990,46(11-12):1142-1148
  相似文献   

17.
Regulation of cyclin-Cdk activity in mammalian cells   总被引:33,自引:0,他引:33  
Cell cycle progression is driven by the coordinated regulation of the activities of cyclin-dependent kinases (Cdks). Of the several mechanisms known to regulate Cdk activity in response to external signals, regulation of cyclin gene expression, post-translational modification of Cdks by phosphorylation-dephosphorylation cascades, and the interaction of cyclin/Cdk complexes with protein inhibitors have been thoroughly studied. During recent years, much attention has also been given to mechanisms that regulate protein degradation by the ubiquitin/proteasome pathway, as well as to the regulation of subcellular localization of the proteins that comprise the intrinsic cell cycle clock. The purpose of the present review is to summarize the most important aspects of the various mechanisms implicated in cell cycle regulation.  相似文献   

18.
Mechanisms controlling cellular suicide: role of Bcl-2 and caspases   总被引:7,自引:0,他引:7  
Apoptosis is an essential and highly conserved mode of cell death that is important for normal development, host defense and suppression of oncogenesis. Faulty regulation of apoptosis has been implicated in degenerative conditions, vascular diseases, AIDS and cancer. Among the numerous proteins and genes involved, members of the Bcl-2 family play a central role to inhibit or promote apoptosis. In this article, we present up-to-date information and recent discoveries regarding biochemical functions of Bcl-2 family proteins, positive and negative interactions between these proteins, and their modification and regulation by either proteolytic cleavage or by cytosolic kinases, such as Raf-1 and stress-activated protein kinases. We have critically reviewed the functional role of caspases and the consequences of cleaving key substrates, including lamins, poly(ADP ribose) polymerase and the Rb protein. In addition, we have presented the latest Fas-induced signalling mechanism as a model for receptor-linked caspase regulation. Finally, the structural and functional interactions of Ced-4 and its partial mam malian homologue, apoptosis protease activating factor-1 (Apaf-1), are presented in a model which includes other Apafs. This model culminates in a caspase/Apaf regulatory cascade to activate the executioners of programmed cell death following cytochrome c release from the mitochondria of mammalian cells. The importance of these pathways in the treatment of disease is highly dependent on further characterization of genes and other regulatory molecules in mammals. Received 18 February 1998; accepted February 1998  相似文献   

19.
Social environmental conditions, particularly the experience of social adversity, have long been connected with health and mortality in humans and other social mammals. Efforts to identify the physiological basis for these effects have historically focused on their neurological, endocrinological, and immunological consequences. Recently, this search has been extended to understanding the role of gene regulation in sensing, mediating, and determining susceptibility to social environmental variation. Studies in laboratory rodents, captive primates, and human populations have revealed correlations between social conditions and the regulation of a large number of genes, some of which are likely causal. Gene expression responses to the social environment are, in turn, mediated by a set of underlying regulatory mechanisms, of which epigenetic marks are the best studied to date. Importantly, a number of genes involved in the response to the social environment are also associated with susceptibility to other external stressors, as well as certain diseases. Hence, gene regulatory studies are a promising avenue for understanding, and potentially developing strategies to address, the effects of social adversity on health.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号