首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
针对盲信号分离的白化预处理过程,提出了一种基于代价函数的在线白化算法.该算法利用一类代价函数的极值点特性,采用递归计算的方式获得信号的白化矩阵.与传统的白化算法相比,本算法计算量低、利用样本少,因此可适用于信号的在线预白化处理.仿真试验表明,本算法收敛速度快,白化效果理想,为进一步的研究在线盲分离提供了良好的基础.  相似文献   

2.
提出了一种新的自适应盲源分离算法,在无噪音实时两源两传感器的情况下,一旦观测信号被白化,只需要辨识一个特定的旋转矩阵就可以完成盲源分离,并给出了能表征该旋转矩阵的角的自适应估计器,仿真结果表明,当满足源峭度和不为零的条件时,这种方法是一种稳定的和有效的分离算法。  相似文献   

3.
基于自然梯度原则并利用信号的时间相关属性对一类代价函数进行推导,获得一种新的非平稳信号自适应盲分离算法.算法利用样本的多时延解相关方法以及迭代计算的形式获得盲混合信号的分离矩阵,无需对观测样本进行分块处理,计算工作量低.仿真结果表明,算法分离精度高,迭代过程平稳,对多个信号源的盲分离可实现良好的分离性能.  相似文献   

4.
提出一种RBF神经网络算法应用于线性混叠信号的盲分离。所用的RBF神经网络算法是从输入信号的数据中训练出中心值和宽度值,再训练通过用最大熵值的代价函数推导的权值。所用的代价函数保证了网络的输出尽可能独立,使信号能正确地分离。仿真验证了所用的算法能减少分离时间和提高分离效率。对比ME算法,该算法更好。  相似文献   

5.
一种自适应信号盲分离和盲辨识的有效算法   总被引:3,自引:0,他引:3  
为了把几个独立信号从它们的线性混叠中盲分离或盲辨识出来,提出了一种具有抑制噪声作用的有效自适应学习算法,研究了算法的有界性和渐近稳定性.以渐近稳定性为条件,给出了算法中非线性函数的适当选择.仿真研究表明,算法是有效而鲁棒的,且能够从有噪声的混叠中恢复原独立信号.  相似文献   

6.
基于自然梯度算法的盲信源分离研究   总被引:6,自引:0,他引:6       下载免费PDF全文
盲信源分离试图从给定的一组混合观察数据中恢复未知的独立信源。文中介绍盲信源分离的一种非常重要的算法——自然梯度算法。对通信信号和自然语音信号采用不同的活动函数进行了盲信源分离的计算机模拟实验,结果显示该算法能够分别有效地分离这两类随机混合的信号。  相似文献   

7.
盲源分离自适应算法的统一形式   总被引:1,自引:0,他引:1  
通过合理的推导与转换,统一了几种不同的盲源分离自适应算法,指出了这些有源分离自适应算法之间的区别与联系,给出了该统一形式中非线性函数选取的稳定性原则。提出了在稳定提下,兼顾算法多种性能的非线性函数综合择优准则。计算机模拟实验结果验证了该准则的有效性。  相似文献   

8.
提出了一种新的线性混叠信号的盲分离算法,该算法利用信号相互独立时其协方差矩阵的对角化特征作为分离准则,采用最速下降法进行分离.该算法对源信号和混叠矩阵没有过多要求且计算量不大,理论分析与仿真结果表明:该算法具有很好的分离效果.  相似文献   

9.
提出了一种基于二阶循环统计量的直接盲MMSE均衡算法。该算法利用接收信号的二阶循环平稳性,依据MMSE准则,不经过辨识直接均衡信道。由于利用了信号的周期循环平稳性,该算法可以实现非最小相位系统的盲均衡。仿真实验表明,与基于子空间的盲均衡算法和基于CMA的盲均衡算法相比较,该算法运算复杂度低、收敛速度快、且不会陷入局部最优点。此外,由于该算法不经过辨识直接均衡信道,所以受信道阶数误差的影响较小。  相似文献   

10.
针对语音信号频域盲分离的排序问题,研究了幅值函数和频点间距对信号相关性的影响,提出了利用短时平均幅度函数和加入频点系数的方法对算法进行改进。改进算法考虑了幅值函数的稳定性和远距离频点的不可靠性,最终实现全部频点的排序。仿真实验对两种不同情况下混合的语音信号进行分离,结果表明改进算法的有效性。  相似文献   

11.
讨论一种非平稳卷积混合声音信号盲分离算法。该算法基于多时延解相关准则建立代价函数,用Frobenius范数最小化代价函数得分离矩阵。算法计算量低,适用于自适应在线运算,而且不要求时延相关矩阵是正定的。对非平稳卷积混合声音信号进行仿真实验,验证了算法的有效性。  相似文献   

12.
利用模糊函数的时频分布特征选取时频点,提出一种新的时频域盲信号分离算法.与传统的维纳时频分布相比,不仅显著缩小了时频点的选择范围,而且不需要设定阈值.算法利用一种非正交联合对角化方法求取分离矩阵,在原始信号具有互相关的情况下也能达到良好的分离性能.仿真试验表明,该算法计算量小,分离精度高,可实现高斯源或相关源信号的盲分离.  相似文献   

13.
自适应最优保存遗传算法在盲信号分离中的应用   总被引:4,自引:0,他引:4  
独立分量分析方法(ICA)是信号处理的一种新技术。其基本目标是寻找线性变换矩阵,将观测的多维混合信号进行变换,变换后的输出信号各分量之间尽可能统计独立。将遗传算法与ICA相结合,提出基于GA的盲分离算法,并分析了它们的收敛性和稳态性能。其有效性为仿真结果所证实。  相似文献   

14.
为了进一步改善阵列信号处理中盲源分离算法的分离性能,提出了一种新的基于阵列结构的盲分离算法.该算法的基本思想是利用已有的盲源分离算法(EASI和FastICA算法)估计混合矩阵,根据估计出来的混合矩阵和均匀线阵的特点来重构混合矩阵,对分离矩阵进行较正,达到改善算法分离性能的目的.仿真结果表明,该文提出的EASI-1算法的平均干信比比EASI算法低7.5 dB,FastICA-1算法的平均干信比比FastICA算法低4.3 dB.  相似文献   

15.
提出了一种基于信息最大准则的盲源分离新算法。新算法在当前时刻的系数更新时充分利用先前迭代过程的信息 ,并在每一步迭代时归一化权系数矩阵。仿真表明 ,新算法应用于盲图像信号分离时得到了很好的分离效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号