首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
利用亚纯函数的Nevanlinna值分布理论的差分模拟,研究了给定的差分Painlev$\acute{e}$方程I和差分Painlev$\acute{e}$方程II的超越亚纯解的增长性,得到了一些有意义的结果:在给定的条件下,给出了给定的差分Painlev$\acute{e}$方程I和差分Painlev$\acute{e}$方程II的超越亚纯解的增长级的精确估计.  相似文献   

2.
利用 亚纯函数的Nevanlinna值分布理论的差分模拟, 研究了非线性高阶差分方程$ P_{1}(z)\prod_{i=1}^{n}f(z+c_{i})=P_{2}(z)f(z)^{n} $ 亚纯解的零点,极点收敛指数和增长级,其中$n$是一个正整数,$c_i(i=1,...,n)$是非零复常数, $P_1(z),P_2(z)$是非零多项式.在给定条件下,得到了这类差分方程亚纯解的增长级的精确估计.  相似文献   

3.
本文研究了一类四阶非线性常微分方程边值问题 $$ \left\{\begin{array}{ll} u''=r f(t, u(t)), \ \ \ 0相似文献   

4.
一类高阶微分方程的复振荡   总被引:1,自引:0,他引:1  
研究了微分方程 $ f^{(k)}+H_{k-1}(z)f^{(k-1)}+\cdots+H_0(z)f=F(z) $ 解的增长率,其中\\$H_j(z)=A_j(z)\mathrm{e}^{P_j(z)}(j=0,1,\cdots,k-1), A_j(z),F(z)$是整函数,$\sigma(A_j)  相似文献   

5.
本文研究了非线性二阶差分方程~Dirichlet~边值问题 $$ \left\{\begin{array}{ll} \Delta^{2}u(t-1)+\lambda a(t)f(u(t))=0,~~~t\in[1,T]_{Z},\u(0)=u(T+1)=0 \end{array} \right. $$ 正解的存在性,~其中~$\Delta u(t-1)=u(t)-u(t-1),T>2$~是一个整数,~$\lambda$~是一个正参数,~$f:[0,\infty)\rightarrow R$~连续且~$f(0)>0$,~权函数~$a:[1,T]_{Z}\rightarrow R$~允许变号.~本文主要结果的证明基于~Leray-Schauder~不动点定理.\\  相似文献   

6.
设 $n$ 为任意正整数. 著名 Erd\H{o}s-Straus 猜想是指当 $n\ge 2$ 时, Diophantine 方程 $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 总有正整数解 $(x,y,z)$. 虽然有许多作者研究这个猜想, 但是至今它还未被解决. 设 $p\ge 5$ 为任意素数. 最近, Lazar 证明 Diophantine 方程 $ \frac{4}{p}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 在区域 $xy<\sqrt{z/2}$ 内没有 $x$ 与 $y$ 互素的正整数解 $(x,y,z)$. 同时, Lazar 提出问题: 在上述方程中以 $5/p$ 替换 $4/p$, 是否有类似结果? 这也是 Sierpinski 提出的一个猜想. 在本文中, 我们证明 Diophantine 方程 $\frac{a}{p}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 没有满足\ $x, y$ 互素且\ $xy<\sqrt{z/2}$ 的正整数解 $(x,y,z)$, 其中 $a$ 为满足\ $a<7\le p$ 的正整数. 这回答了上述 Lazar 问题, 并推广了 Lazar 的结果. 我们的证明方法和工具主要是利用有理数\ $\frac{a}{p}$ 的连分数表示.  相似文献   

7.
设 $x:M\rightarrow R^{n+1}$ 是局部强凸超曲面, 由定义在凸域$D \subset R^{n}$上的局部强凸函数 $x_{n+1}=f(x_{1},...,x_{n})$给出. 在$M$上定义 $F$- 度量 $\tilde{G}=F(\rho)\sum\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}dx_{i}dx_{j}$.研究$F$-完备抛物仿射超球,得到了相应的Bernstein性质.  相似文献   

8.
该文首先应用代数数论的方法证明了不定方程~$x{^2}+4{^n}=y{^9}$~在~$x\equiv 1 \pmod{2}$ 时无整数解, 再证明不定方程~$x{^2}+4{^n}=y{^9}$~在~$n \in\{6, 7, 8\}$~ 时均无整数解, 进而证明不定方程~$x{^2}+4{^n}=y{^9}$~仅当~$n\equiv 0 \pmod{9}$~和~$n\equiv 4 \pmod{9}$ 时有整数解, 且当~$n=9m$~时, 其整数解为~$(x,y)=(0,4{^m})$; 当~$n=9m+4$~时, 其整数解为~$(x,y)=(\pm16\times2{^{9m}},2\times4{^m}),$~ 这里的~$m$~为非负整数. 进一步, 根据~$k=5,9$ 的结论, 文章提出了一个关于不定方程~$x{^2}+4{^n}=y{^k}$ $(k$ 为奇数$)$ 的整数解的猜想, 以供后续研究.  相似文献   

9.
在$^3P_0 $模型框架下, 计算$\Lambda _{c} (2880)^+$作为2D波激发态的衰变宽度和分支比, 确定其量子态并探究内部激发模式. 计算结果表明: $\Lambda _{c} (2880)^+$有可能是2D激发态$\Lambda _{{c}2} \big(\frac{3}{2}^+\big)$, $J^P=\frac{3}{2}^+$, 且$n_\rho =1$、$l_\lambda =2$, 为径向$\rho $激发、轨道$\lambda $激发的激发模式, 总衰变宽度${\it\Gamma}_{total} =18.53$ MeV, 分支比比值$R={\it\Gamma}(\Lambda _{c}(2880)^+\to \Sigma _{c}(2520)\pi)$/${\it\Gamma}(\Lambda _{c} (2880)^+\to \Sigma _{c} (2455)\pi)=0.16$; 也可能是2D激发态$\Lambda _{{c}2}^{'}\big(\frac{3}{2}^+\big)$, $J^P=\frac{3}{2}^+$, 且$n_\lambda =1$、$l_\lambda =2$, 为径向$\lambda $激发、轨道$\lambda $激发的激发模式, 总衰变宽度${\it\Gamma} _{total} =1.69$ MeV, 分支比比值$R={\it\Gamma}(\Lambda _{c} (2880)^+\to \Sigma_{c}(2520)\pi )$/${\it\Gamma} (\Lambda_{c} (2880)^+\to \Sigma_{c}(2455)\pi )=0.10$.  相似文献   

10.
为解决与毕达哥拉斯方程x2+y2=z2相关的整数矩阵方程问题, 利用矩阵的基本运算把整数矩阵方程问题转化成不定方程求解的问题, 从特殊情形逐步推广到一般情形, 研究了与毕达哥拉斯方程相关的一类二阶整数矩阵方程${\mathit{\boldsymbol{X}}^2} + {\mathit{\boldsymbol{Y}}^2} = \lambda \mathit{\boldsymbol{I}} $ ($\lambda \in \mathbb{Z}, \boldsymbol{I} $为单位矩阵), 并得到其全部解( X , Y ), 类似可得二阶整数矩阵方程${\mathit{\boldsymbol{X}}^2} - {\mathit{\boldsymbol{Y}}^2} = \lambda \mathit{\boldsymbol{I}} $的全部解.  相似文献   

11.
设A表示单位圆盘D={z∈C:|z|<1}内解析且具有如下形式f(z)=z+∞∑n=2anzn的函数族.文章研究了在单位圆盘D上与指数函数有关的解析函数类S*e:S*e={f|zf'(z)/f(z)相似文献   

12.
考虑周期系数高阶线性微分方程f~((n))+∑j=1 n[P_(n-j)(e~z)+Q_(n-j)(e~(-z))]f~((n-j))=R_1(e~z)+R_2(e~(-z)),其中n≥2,P_j(z),Q_j(z)(j=0,1,2,…,n-1),R_1(z)和R_2(z)均是关于z的多项式,且Pj(z),Qj(z)(j=0,1,2,…,n-1)不全为常数.在条件degPjdegP0(j=1,2,…,n-1)下,获得方程的次正规解的表示.  相似文献   

13.
本文研究了一阶周期边值问题■多个正解的存在性,其中λ>0是一个参数,a∈C(R,[0,∞))是一个T-周期函数且∫T0a(t)dt>0,f∈C([0,∞),(0,∞))且单调递增.在■的条件下,本文证明存在一个λ*>0,使当0<λ<λ*时问题不存在正解;当λ=λ*时问题至少存在一个正解;当λ>λ*时问题至少存在两个正解.主要结果的证明基于上下解方法和Leray-Schauder度.  相似文献   

14.
本文获得了二阶周期边值问题{u″(t)-k2u+λa(t)f(u)=0,t∈[0,2π],u(0)=u(2π),u′(0)=u′(2π)正解的全局结构,其中k0为常数,λ是正参数,a∈C([0,2π],[0,∞))且在[0,2π]的任何子区间内a(t)≠0,f∈C([0,∞),[0,∞)).主要结果的证明基于Rabinowitz全局分歧理论和逼近方法.  相似文献   

15.
证明了如果$~f~$是非常数整函数满足超级$~\sigma_{2}(f)<\frac{1}{2}~$,~$~k~$是一正整数,~如果$~f~$和$~f^{(k)}~$分担多项式$~p(z)~$~CM,~其中$~p(z)=a_{m}z^{m}+a_{m-1}z^{m-1}+\cdots+a_{0}~$~($~a_{m}\neq 0,~a_{m-1},~\ldots,~a_{0}~$均为常数)~,~那么$~f^{(k)}(z)-p(z)=c(f(z)-p(z))~$,~其中$~c~$是非零常数.  相似文献   

16.
利用亚纯函数值分布理论和正规族理论、线性代数理论及研究方法,研究了全纯曲线族分担超平面的正规性。设$ \mathcal{F} $是从$ D\subset \mathbb{C} $到${\mathbb{P}}^{3}\left(\mathbb{C}\right) $的一族全纯映射,$ {H}_{0}$和${H}_{l}({H}_{l}\ne {H}_{0}) $是$ {\mathbb{P}}^{3}\left(\mathbb{C}\right) $上处于一般位置的超平面,$l=1,2,\cdots,8 $。假定对于任意的$ f\in \mathcal{F} $满足条件:$f(\textit{z})\in H_l$当且仅当$\nabla f \in H_l=\{x\in {\mathbb{P}}^{3}\left(\mathbb{C}\right): \rhbr \langle x, \alpha_l \rangle=0\}$;若$f(\textit{z})\in H_l $的并集,有$|\langle f\left(z\right),{H}_{0}\rangle|/(\|f\|\|{H}_{0}\|)$大于或等于$\delta $。$0 < \delta < 1 $,$\delta $是常数,则 $ \mathcal{F} $在D上正规。  相似文献   

17.
研究了一类高阶周期系数线性微分方程在其系数A1起控制作用时,方程f(k)+Ak-2f(k-2)+…+A1f′+A0f=0的解f(z)和f(z+2pi)的线性相关性.  相似文献   

18.
设$x:M\rightarrow A^{n+1}$ 是由定义在凸域 $\Omega\subset A^n$ 上的某局部严格凸函数 $x_{n+1}=f(x_1,\dots,x_n)$ 给出的超曲面. 我们记 $\rho(x)=\left(\det\left(\frac{\partial^2f}{\partial x_i\partial x_j}(x)\right)\right)^{-\frac{1}{n+2}} $. 假设 $(M, g)$ 是一完备的Hessian流形且具有非负的李奇曲率,如果 $\rho$ 满足 $\Delta_{g}\rho=\beta\frac{\parallel\nabla\rho \parallel_g^2}{\rho}(\beta\neq 1)$ , 则 $M$ 一定是椭圆抛物面.  相似文献   

19.
利用亚纯函数值分布理论和正规族理论、线性代数理论及研究方法,研究了全纯曲线族分担超平面的正规性。设\begin{document}$ \mathcal{F} $\end{document}是从\begin{document}$ D\subset \mathbb{C} $\end{document}到\begin{document}${\mathbb{P}}^{3}\left(\mathbb{C}\right) $\end{document}的一族全纯映射,\begin{document}$ {H}_{0}$\end{document}和\begin{document}${H}_{l}({H}_{l}\ne {H}_{0}) $\end{document}是\begin{document}$ {\mathbb{P}}^{3}\left(\mathbb{C}\right) $\end{document}上处于一般位置的超平面,\begin{document}$l=1,2,\cdots,8 $\end{document}。假定对于任意的\begin{document}$ f\in \mathcal{F} $\end{document}满足条件:\begin{document}$f(\textit{z})\in H_l$\end{document}当且仅当\begin{document}$\nabla f \in H_l=\{x\in {\mathbb{P}}^{3}\left(\mathbb{C}\right): $\end{document}\begin{document}$ \langle x, \alpha_l \rangle=0\}$\end{document};若\begin{document}$f(\textit{z})\in H_l $\end{document}的并集,有\begin{document}$|\langle f\left(z\right),{H}_{0}\rangle|/(\|f\|\|{H}_{0}\|)$\end{document}大于或等于\begin{document}$\delta $\end{document}。\begin{document}$0 < \delta < 1 $\end{document},\begin{document}$\delta $\end{document}是常数,则 \begin{document}$ \mathcal{F} $\end{document}在D上正规。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号