共查询到15条相似文献,搜索用时 93 毫秒
1.
蒋成香 《上海师范大学学报(自然科学版)》2010,39(4):344-351
主要研究了两步Runge-Kutta方法求解延迟系统方程的稳定性.首先讨论了两步Runge-Kutta方法求解常微分方程数值解的L-稳定性,给出L-稳定性的充分性条件,然后讨论延迟微分方程的GPL-稳定性,得到延迟微分方程是GPL-稳定的充要条件是它是L-稳定的. 相似文献
2.
讨论了用Runge.Kutta方法求解带有两个延迟常量的多延迟积分微分方程du/dt=Lu(t)+M1u(t-T1)+M2u(t-T2)+K1∫5t-T1u(θ)dθ+K2∫5t-T2u(θ)dθ的数值稳定性,并给出了其渐进稳定的充分条件.这里的L,M1,M2,K1,K2都是复矩阵.特别当K1,K2=0时,亦可以得到相同的结论,即每一个A稳定的RK方法都可以证明其解的延迟独立稳定性. 相似文献
3.
讨论了一类延迟量为有界变量的非线性变延迟微分方程初值问题, 得到了带线性插值的Runge- Kutta 方法的渐近稳定性结果. 即如果Runge- Kutta 方法( A, b , c) 是( k , l) - 代数稳定的且k < 1, 那么带线性插值的该方法是GAR( 2m , l) - 稳定的. 相似文献
4.
研究了用IRK方法求解多延时微分方程数值解的稳定性,对于线性模型方程,分析并证明了IRK方法是GPLm-稳定的当且仅当它是L稳定的. 相似文献
5.
研究了一类多延迟微分方程数值方法的散逸性问题.介绍了GD(l)-散逸性,并证明了代数稳定的Runge-Kutta方法用于此类问题时是GD(l)-散逸的.该结果表明,所考虑的数值方法继承了方程本身的散逸性. 相似文献
6.
提出了求解一类随机常微分方程(SODEs)的3种Runge-Kutta格式:显式Runge-Kutta格式、半隐式Runge-Kutta格式和隐式Runge-Kutta格式.讨论了这3种Runge-Kutta格式的T稳定条件,并给出了部分数值实验结果. 相似文献
7.
对比例延迟微分方程 ,L ,M∈N×N为常矩阵 ,α∈ (0 ,1)为实常数 ,研究变步长的Runge -Kutta方法的渐近稳定性 ,证明了矩阵A非奇异的Runge -Kutta方法渐近稳定的充分必要条件是 相似文献
8.
王琦 《宁夏大学学报(自然科学版)》2011,32(4):314-317
将Runge-Kutta方法用于求解一类分片泛函多延迟微分方程,研究其数值解的稳定性.给出了其解析解的渐近稳定区域包含在其数值解的渐近稳定区域的充分必要条件.最后,用一些数值算例验证了理论结果. 相似文献
9.
为进一步研究随机微分方程的稳定性,给出了随机微分方程的二级Runge-Kutta方法的算法格式,研究了二级显式随机Runge-Kutta方法的均方稳定和指数稳定的条件,并证明了对于线性检验方程,均方稳定性和指数稳定性的关系. 相似文献
10.
张雨馨 《吉林大学学报(理学版)》2012,50(1):67-68
考虑逼近随机微分方程的1.5阶Runge-Kutta法的矩指数稳定性和矩渐近稳定性, 对于标量线性检验方程, 证明了随机Runge-Kutta法的矩指数稳
定性和矩渐近稳定性是一致的, 并给出了这两种稳定性的存在条件. 相似文献
定性和矩渐近稳定性是一致的, 并给出了这两种稳定性的存在条件. 相似文献
11.
仇璘 《上海师范大学学报(自然科学版)》1997,(3)
研究了中立型延时微分方程数值解的Runge-Hutta方法的稳定性,根据下面的线性试验方程考虑此方法的稳定性,y'(t)=ay(t)十by(t-τ)十cy'(t-τ),t≥0,y(t)=g(t),-τ≤t≤0,其中τ>0,a,b和c∈C,证明得一个隐式Runge-Kutta方法是NGP-稳定的,当且仅当它是A-稳定的。 相似文献
12.
孙乐平 《上海师范大学学报(自然科学版)》1997,(4)
给出了多步Runge-Kutta法(MIRK)解延时微分方程(DDEs)的Pm-稳定性.着重研究此法用于下列具有m个延时量的线性试验方程时的稳定性态。u’(t)=au(t)+(t-τj),t≥0.u(t)=(t),t≤0.其中a,bj(j=1,2,…,m) ∈C,τm≥τ(m-1)≥…≥τ>0,(t)给定.证明了m=2时,MIRK法是P2-稳定的.对于m>2,得到同样的结果(Pm-稳定). 相似文献
13.
延迟微分代数系统(DDAEs)是具有时滞影响和代数约束的微分系统,为计算机辅助设计、化学反应模拟、线路分析、最优控制、实时仿真以及管理系统等科学与工程应用问题提供了有效的数学模型.中立型多延迟微分代数系统是一种结构较复杂的DDAEs,因为它不仅含有多个延迟项,而且还包含有未知函数的导数.然而,由于延迟微分代数方程的复杂性,只有极少数延迟微分方程能获得其理论解的精确解析表达式.因此,研究延时微分代数方程的数值解法显得十分重要.而在数值解的研究中,有效可靠的算法及算法的数值稳定性研究,又是必须首先面对的问题.研究了连续的龙格库塔方法对多延迟量微分代数方程的渐进稳定性,并证明了这种方法在系数矩阵都是上三角形的假设下是渐进稳定的,这种假设对有广泛应用的Hessenberg DDAEs是正确的. 相似文献
14.
本文将Runge-Kutta法应用于解多个滞时的微分方程.主要研究该方法数值解线性试验方程y'(t)=ay(t)十b1y(t—τ1)十b2y(t—τ2)(其中τ2≥,τ1>0,a,b1,b2为复数)的稳定性态.我们证明满足条件det(I—xA)=0det[I—A十xebT」≠0(x∈C)的Runge-Kutta法是GP-稳定的当且仅当该方法是A-稳定的. 相似文献
15.
利用数值实验.对Adomian分解法和经典Runge—Kutta方法进行比较.实验结果表明,用Adomian分解法求解微分方程具有误差小、精度高的优点. 相似文献