首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Octopamine.     
J Axelrod  J M Saavedra 《Nature》1977,265(5594):501-504
Octopamine is highly concentrated in neurones of several invertebrate species. Unlike in mammals, octopaminergic neurones in invertebrates are spatially separated from catecholaminergic neurons. In identified nerve cells of Aplysia, however, this amine coexists with other putative neurotransmitters. Octopamine is synthesized in nerves from tyrosine and tyramine and metabolised mainly by monoamine oxidase. When lobster nerves are depolarized, octopamine is liberated by a Ca2+-dependent process. A specific adenylate cyclase is stimulated by octopamine in several invertebrates to activate phosphorylase in the cockroach, induce a light-flash in firefly lattern or inhibit rhythm contractions in locust muscle. All of these observations provide compelling evidence that octopamine is a neurotransmitter in invertebrates. In mammals octopamine is localised in nerves in peripheral tissues and brain where it seems to coexist with noradrenaline, the catecholamine being present in much higher concentrations. Octopamine is released from nerves together with noradrenaline and it may under certain conditions modify the actions of the adrenergic neurotransmitter. Octopamine is present in unusually high concentrations in certain neurological and hepatic diseases and may have a pathophysiological role.  相似文献   

2.
Scholz H  Franz M  Heberlein U 《Nature》2005,436(7052):845-847
Repeated alcohol consumption leads to the development of tolerance, simply defined as an acquired resistance to the physiological and behavioural effects of the drug. This tolerance allows increased alcohol consumption, which over time leads to physical dependence and possibly addiction. Previous studies have shown that Drosophila develop ethanol tolerance, with kinetics of acquisition and dissipation that mimic those seen in mammals. This tolerance requires the catecholamine octopamine, the functional analogue of mammalian noradrenaline. Here we describe a new gene, hangover, which is required for normal development of ethanol tolerance. hangover flies are also defective in responses to environmental stressors, such as heat and the free-radical-generating agent paraquat. Using genetic epistasis tests, we show that ethanol tolerance in Drosophila relies on two distinct molecular pathways: a cellular stress pathway defined by hangover, and a parallel pathway requiring octopamine. hangover encodes a large nuclear zinc-finger protein, suggesting a role in nucleic acid binding. There is growing recognition that stress, at both the cellular and systemic levels, contributes to drug- and addiction-related behaviours in mammals. Our studies suggest that this role may be conserved across evolution.  相似文献   

3.
抑郁的发生受到遗传和环境的影响,啮齿类的分子遗传学的研究表明单胺类分子如五羟色胺、去甲肾上腺素和多巴胺,HPA系统的相关的激素分子以及神经营养类分子如脑源性神经营养因子(BDNF)都可能参与了抑郁发生的神经生理过程.编码以上分子的基因型的差异有可能是导致个体对应激反应的敏感性和抑郁发生差异的遗传基础.童年早期和成年经历的压力生活事件是影响抑郁发生的常见的环境因素.遗传因素赋予个体对应激不同的敏感性,环境因素也会影响基因的表达,二者的交互作用影响了个体相关脑区的神经回路的功能从而影响了抑郁的发生.  相似文献   

4.
5.
Cirelli C  Bushey D  Hill S  Huber R  Kreber R  Ganetzky B  Tononi G 《Nature》2005,434(7037):1087-1092
Most of us sleep 7-8 h per night, and if we are deprived of sleep our performance suffers greatly; however, a few do well with just 3-4 h of sleep-a trait that seems to run in families. Determining which genes underlie this phenotype could shed light on the mechanisms and functions of sleep. To do so, we performed mutagenesis in Drosophila melanogaster, because flies also sleep for many hours and, when sleep deprived, show sleep rebound and performance impairments. By screening 9,000 mutant lines, we found minisleep (mns), a line that sleeps for one-third of the wild-type amount. We show that mns flies perform normally in a number of tasks, have preserved sleep homeostasis, but are not impaired by sleep deprivation. We then show that mns flies carry a point mutation in a conserved domain of the Shaker gene. Moreover, after crossing out genetic modifiers accumulated over many generations, other Shaker alleles also become short sleepers and fail to complement the mns phenotype. Finally, we show that short-sleeping Shaker flies have a reduced lifespan. Shaker, which encodes a voltage-dependent potassium channel controlling membrane repolarization and transmitter release, may thus regulate sleep need or efficiency.  相似文献   

6.
Product of per locus of Drosophila shares homology with proteoglycans   总被引:23,自引:0,他引:23  
F R Jackson  T A Bargiello  S H Yun  M W Young 《Nature》1986,320(6058):185-188
  相似文献   

7.
B Krishnan  S E Dryer  P E Hardin 《Nature》1999,400(6742):375-378
The core mechanism of circadian timekeeping in arthropods and vertebrates consists of feedback loops involving several clock genes, including period (per) and timeless (tim). In the fruitfly Drosophila, circadian oscillations in per expression occur in chemosensory cells of the antennae, even when the antennae are excised and maintained in isolated organ culture. Here we demonstrate a robust circadian rhythm in Drosophila in electrophysiological responses to two classes of olfactory stimuli. These rhythms are observed in wild-type flies during light-dark cycles and in constant darkness, but are abolished in per or tim null-mutant flies (per01 and tim01) which lack rhythms in adult emergence and locomotor behaviour. Olfactory rhythms are also abolished in the per 7.2:2 transgenic line in which per expression is restricted to the lateral neurons of the optic lobe. Because per 7.2:2 flies do not express per in peripheral oscillators, our results provide evidence that peripheral circadian oscillators are necessary for circadian rhythms in olfactory responses. As olfaction is essential for food acquisition, social interactions and predator avoidance in many animals, circadian regulation of olfactory systems could have profound effects on the behaviour of organisms that rely on this sensory modality.  相似文献   

8.
Pascual A  Huang KL  Neveu J  Préat T 《Nature》2004,427(6975):605-606
The asymmetrical positioning of neural structures on the left or right side of the brain in vertebrates and in invertebrates may be correlated with brain laterality, which is associated with cognitive skills. But until now this has not been illustrated experimentally. Here we describe an asymmetrically positioned brain structure in the fruitfly Drosophila and find that the small proportion of wild-type flies that have symmetrical brains with two such structures lack a normal long-term memory, although their short-term memory is intact. Our results indicate that brain asymmetry may be required for generating or retrieving long-term memory.  相似文献   

9.
Petrascheck M  Ye X  Buck LB 《Nature》2007,450(7169):553-556
The mechanisms that determine the lifespan of an organism are still largely a mystery. One goal of ageing research is to find drugs that would increase lifespan and vitality when given to an adult animal. To this end, we tested 88,000 chemicals for the ability to extend the lifespan of adult Caenorhabditis elegans nematodes. Here we report that a drug used as an antidepressant in humans increases C. elegans lifespan. In humans, this drug blocks neural signalling by the neurotransmitter serotonin. In C. elegans, the effect of the drug on lifespan is reduced or eradicated by mutations that affect serotonin synthesis, serotonin re-uptake at synapses, or either of two G-protein-coupled receptors: one that recognizes serotonin and the other that detects another neurotransmitter, octopamine. In vitro studies show that the drug acts as an antagonist at both receptors. Testing of the drug on dietary-restricted animals or animals with mutations that affect lifespan indicates that its effect on lifespan involves mechanisms associated with lifespan extension by dietary restriction. These studies indicate that lifespan can be extended by blocking certain types of neurotransmission implicated in food sensing in the adult animal, possibly leading to a state of perceived, although not real, starvation.  相似文献   

10.
Ornithine decarboxylase activity is critical for cell transformation.   总被引:50,自引:0,他引:50  
M Auvinen  A Paasinen  L C Andersson  E H?ltt? 《Nature》1992,360(6402):355-358
The enzyme ornithine decarboxylase is the key regulator of the synthesis of polyamines which are essential for cell proliferation. Expression of this enzyme is transiently increased upon stimulation by growth factors, but becomes constitutively activated during cell transformation induced by carcinogens, viruses or oncogenes. To test whether ornithine decarboxylase could be a common mediator of transformation and oncogenic itself, we transfected NIH3T3 cells with expression vectors carrying the complementary DNA encoding human ornithine decarboxylase in sense and antisense orientations. The increased expression of the enzyme (50-100-times endogenous levels) induced not only cell transformation, but also anchorage-independent growth in soft agar and increased tyrosine phosphorylation of a protein of M(r) 130K. Expression of ornithine decarboxylase antisense RNA was associated with an epithelioid morphology and reduced cell proliferation. Moreover, blocking the endogenous enzyme using specific inhibitor or synthesizing antisense RNA prevented transformation of rat fibroblasts by temperature-sensitive v-src oncogene. Our results imply that the gene encoding ornithine decarboxylase is a proto-oncogene central for regulation of cell growth and transformation.  相似文献   

11.
Animals approach stimuli that predict a pleasant outcome. After the paired presentation of an odour and a reward, Drosophila melanogaster can develop a conditioned approach towards that odour. Despite recent advances in understanding the neural circuits for associative memory and appetitive motivation, the cellular mechanisms for reward processing in the fly brain are unknown. Here we show that a group of dopamine neurons in the protocerebral anterior medial (PAM) cluster signals sugar reward by transient activation and inactivation of target neurons in intact behaving flies. These dopamine neurons are selectively required for the reinforcing property of, but not a reflexive response to, the sugar stimulus. In vivo calcium imaging revealed that these neurons are activated by sugar ingestion and the activation is increased on starvation. The output sites of the PAM neurons are mainly localized to the medial lobes of the mushroom bodies (MBs), where appetitive olfactory associative memory is formed. We therefore propose that the PAM cluster neurons endow a positive predictive value to the odour in the MBs. Dopamine in insects is known to mediate aversive reinforcement signals. Our results highlight the cellular specificity underlying the various roles of dopamine and the importance of spatially segregated local circuits within the MBs.  相似文献   

12.
Evidence for neuromelanin involvement in MPTP-induced neurotoxicity   总被引:5,自引:0,他引:5  
Exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) reproduces certain clinical, pathological, and neurochemical features of Parkinson's disease. MPTP is metabolized by monoamine oxidase Type B to 1-methyl-4-phenylpyridine (MPP+), which is selectively accumulated by high-affinity uptake mechanisms into dopaminergic neurons. Lyden et al. described low-affinity binding of MPTP to synthetic and retinal melanin. We showed that MPP+ binds to neuromelanin with high affinity, suggesting that in MPTP neurotoxicity, MPP+ enters nigral neurons by the dopamine uptake system and binds to neuromelanin, which serves as a depot, continuously releasing MPP+ until it destroys the cells. This model predicts that agents which compete with MPP+ binding to neuromelanin should partially protect the dopamine neurons from MPTP-induced toxicity. The most potent identified competitor for MPP+ binding to melanin is the antimalarial drug chloroquine, which has a high affinity for melanins. In the present study, chloroquine, administered to monkeys in conventional anti-malarial doses before MPTP, protects them from MPTP-induced parkinsonian motor abnormalities, dopamine depletion in the striatum, and neuropathological changes in the substantia nigra.  相似文献   

13.
Campbell G 《Nature》2002,418(6899):781-785
Arthropods and higher vertebrates both possess appendages, but these are morphologically distinct and the molecular mechanisms regulating patterning along their proximodistal axis (base to tip) are thought to be quite different. In Drosophila, gene expression along this axis is thought to be controlled primarily by a combination of transforming growth factor-beta (TGF-beta) and Wnt signalling from sources of ligands, Decapentaplegic (Dpp) and Wingless (Wg), in dorsal and ventral stripes, respectively. In vertebrates, however, proximodistal patterning is regulated by receptor tyrosine kinase (RTK) activity from a source of ligands, fibroblast growth factors (FGFs), at the tip of the limb bud. Here I revise our understanding of limb development in flies and show that the distal region is actually patterned by a distal-to-proximal gradient of RTK activity, established by a source of epidermal growth factor (EGF)-related ligands at the presumptive tip. This similarity between proximodistal patterning in vertebrates and flies supports previous suggestions of an evolutionary relationship between appendages/body-wall outgrowths in animals.  相似文献   

14.
15.
Neuser K  Triphan T  Mronz M  Poeck B  Strauss R 《Nature》2008,453(7199):1244-1247
Flexible goal-driven orientation requires that the position of a target be stored, especially in case the target moves out of sight. The capability to retain, recall and integrate such positional information into guiding behaviour has been summarized under the term spatial working memory. This kind of memory contains specific details of the presence that are not necessarily part of a long-term memory. Neurophysiological studies in primates indicate that sustained activity of neurons encodes the sensory information even though the object is no longer present. Furthermore they suggest that dopamine transmits the respective input to the prefrontal cortex, and simultaneous suppression by GABA spatially restricts this neuronal activity. Here we show that Drosophila melanogaster possesses a similar spatial memory during locomotion. Using a new detour setup, we show that flies can remember the position of an object for several seconds after it has been removed from their environment. In this setup, flies are temporarily lured away from the direction towards their hidden target, yet they are thereafter able to aim for their former target. Furthermore, we find that the GABAergic (stainable with antibodies against GABA) ring neurons of the ellipsoid body in the central brain are necessary and their plasticity is sufficient for a functional spatial orientation memory in flies. We also find that the protein kinase S6KII (ignorant) is required in a distinct subset of ring neurons to display this memory. Conditional expression of S6KII in these neurons only in adults can restore the loss of the orientation memory of the ignorant mutant. The S6KII signalling pathway therefore seems to be acutely required in the ring neurons for spatial orientation memory in flies.  相似文献   

16.
Grima B  Chélot E  Xia R  Rouyer F 《Nature》2004,431(7010):869-873
In Drosophila, a 'clock' situated in the brain controls circadian rhythms of locomotor activity. This clock relies on several groups of neurons that express the Period (PER) protein, including the ventral lateral neurons (LN(v)s), which express the Pigment-dispersing factor (PDF) neuropeptide, and the PDF-negative dorsal lateral neurons (LN(d)s). In normal cycles of day and night, adult flies exhibit morning and evening peaks of activity; however, the contribution of the different clock neurons to the rest-activity pattern remains unknown. Here, we have used targeted expression of PER to restore the clock function of specific subsets of lateral neurons in arrhythmic per(0) mutant flies. We show that PER expression restricted to the LN(v)s only restores the morning activity, whereas expression of PER in both the LN(v)s and LN(d)s also restores the evening activity. This provides the first neuronal bases for 'morning' and 'evening' oscillators in the Drosophila brain. Furthermore, we show that the LN(v)s alone can generate 24 h activity rhythms in constant darkness, indicating that the morning oscillator is sufficient to drive the circadian system.  相似文献   

17.
用同位素示踪法研究了IRNA对正常小鼠脾细胞蛋白质合成的影响和IRNA作为抗体合成的直接模板的可能性。结果表明,IRNA能促进正常小鼠淋巴细胞合成抗体,但不能促进淋巴细胞合成IRNA供体型的抗体,说明IRNA不能作为抗体合成的直接模板。实验还表明,IRNA能促进淋巴细胞合成一种分子量为94000的蛋白质分子。对该分子的作用和IRNA的作用机制进行了讨论。  相似文献   

18.
为了研究Zn~(2+)对果蝇生育力和寿命及抗氧化能力的影响。以黑腹果蝇(Drosophila melanogaster)为研究动物,用生存实验来考查不同浓度的Zn~(2+)处理果蝇,研究果蝇F1-F4代生育力和寿命的变化,雌、雄果蝇数量的变化,抗氧化酶SOD、CAT的活力及MDA含量的变化。结果显示:添加Zn~(2+)浓度为1.0 g/mL可以使F1-F4代雌、雄果蝇世代生育力增强,寿命延长,而在Zn~(2+)浓度为2.0×10-3g/mL时果蝇体内MDA含量大量积累,SOD和CAT活性急剧降低,使果蝇提前衰老、死亡并且降低或丧失生殖能力,而Zn~(2+)对果蝇性别分化影响不大,总体接近于1:1。因此,适当浓度的Zn~(2+)可以延长果蝇寿命,增强其生殖力,提高抗氧化能力。  相似文献   

19.
J Ewer  M Rosbash  J C Hall 《Nature》1988,333(6168):82-84
The period (per) gene of Drosophila melanogaster is involved in the expression of circadian rhythms of locomotor activity in adult flies. Molecular studies of per (reviewed in ref. 2) have shown that the transcribed and translated products of this gene are present primarily at the embryonic, pupal and adult stages. Here we describe experiments with arrhythmic per mutants bearing an inducible form of this gene which indicate that strongly rhythmic adult behaviour can be obtained only if per expression is induced in the adult, independent of its history of expression earlier in development. Thus per-mutant locomotor-activity phenotypes seem not to result from abnormalities in the development of neural structures or in physiological processes that may be required at pre-adult stages for the expression of this circadian rhythm. Moreover, the action of per after light:dark cycle entrainment seems to be sufficient for activity rhythms to be exhibited in constant darkness; this suggests further that the per product is required only during the time that the rhythmic behaviour is being manifested. Our strategy used a heat-shock gene promotor fused to per coding sequences to obtain conditional gene expression. Heat-shock promoter-driven genes have previously been used to study the mode of action and tissue specificity of a variety of Drosophila genes; our experiments on circadian rhythms demonstrate the use of such gene constructions for the temporal manipulation of genes whose phenotypes, behavioural and otherwise, affect whole organisms.  相似文献   

20.
First visualization of glutamate and GABA in neurones by immunocytochemistry   总被引:17,自引:0,他引:17  
Immunocytochemical methods for peptides and serotonin have greatly advanced the study of neurones in which these substances are likely to be transmitters. Such direct techniques have not so far been available for the amino acid transmitter candidates. We report here the selective immunocytochemical visualization of the putative transmitters glutamate (Glu) and gamma-aminobutyrate (GABA) by the use of antibodies raised against the amino acids coupled to bovine serum albumin (BSA) with glutaraldehyde (GA). The tissue localizations of Glu-like and GABA-like immunoreactivities (Glu-LI and GABA-LI) matched those of specific uptake sites for Glu and GABA, and, in the case of GABA-LI, also that of the specific marker enzyme glutamic acid decarboxylase (GAD). Thus, GABA-LI was located in what are believed to be GABAergic inhibitory neurones, whereas Glu-LI was concentrated in excitatory, possibly glutamatergic neurones. Preliminary electron microscopic observations suggest that the transmitter amino acids are significantly concentrated in synaptic vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号