首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The effects on iron and copper distribution and metabolism of exposure to high levels of CO2 were studied in the guinea-pig. Mature, male animals were placed in an atmosphere of 15% CO2, 21% O2 (balance N2), and sacrificed from 1 h to 1 week thereafter. Total iron and copper concentrations of blood, liver, spleen and bone, as well as concentrations of heme and ferritin iron, were measured together with blood hematocrit, reticulocytes, plasma hemoglobin, plasma ceruloplasmin and copper concentrations. The results show clearly that rapid and sustained red cell damage or hemolysis ensued several h from the start of CO2 treatment. This resulted in loss of iron and copper from the blood, an influx of both elements into liver, spleen and bone, and a rise in plasma ceruloplasmin. Influx of iron into liver and spleen caused an accumulation of ferritin, the main site for iron storage in cells. Following the effect on red cells, there was an accumulation of heme iron, and a decreased hematocrit, best explained by a depressed activity of the reticuloendothelial and erythropoietic systems. A period of adaptation succeeded these events, in which all blood parameters and most tissue values returned to normal, despite the continuing presence of high CO2. The only changes not reversed were the elevations in liver, spleen and bone iron stores. These remained high, with a net accumulation of greater than 2 mg iron, or 3-4 times more than originally present. The results indicate that at least in the guinea-pig, high CO2 exposure results in red cell damage and other events leading to an accumulation of additional iron in the body; also, that iron accumulated as ferritin and hemosiderin in liver and spleen may not be readily available to restore blood hemoglobin concentrations on an acute basis.  相似文献   

2.
Summary The effects on iron and copper distribution and metabolism of exposure to high levels of CO2 were studied in the guinea-pig. Mature, male animals were placed in an atmosphere of 15% CO2, 21% O2 (balance N2), and sacrificed from 1 h to 1 week thereafter. Total iron and copper concentrations of blood, liver, spleen and bone, as well as concentrations of heme and ferritin iron, were measured together with blood hematocrit, reticulocytes, plasma hemoglobin, plasma ceruloplasmin and copper concentrations. The results show clearly that rapid and sustained red cell damage or hemolysis ensued several h from the start of CO2 treatment. This resulted in loss of iron and copper from the blood, an influx of both elements into liver, spleen and bone, and a rise in plasma ceruloplasmin. Influx of iron into liver and spleen caused an accumulation of ferritin, the main site for iron storage in cells. Following the effect on red cells, there was an accumulation of heme iron, and a decreased hematocrit, best explained by a depressed activity of the reticuloendothelial and erythropoietic systems. A period of adaptation succeeded these events, in which all blood parameters and most tissue values returned to normal, despite the continuing presence of high CO2. The only changes not reversed were the elevations in liver, spleen and bone iron stores. These remained high, with a net accumulation of >2 mg iron, or 3–4 times more than originally present. The results indicate that at least in the guinea-pig, high CO2 exposure results in red cell damage and other events leading to an accumulation of additional iron in the body; also, that iron accumulated as ferritin and hemosiderin in liver and spleen may not be readily available to restore blood hemoglobin concentrations on an acute basis.Acknowledgments. We gratefully acknowledge the technical assistance of Joan R. Moor and Lakshmi Vulimiri with these studies, and the support of Grants No. 17249 and HL22410 from the U.S. Public Health Service.  相似文献   

3.
The patterns of Glut1 and Glut3 glucose transporter protein and mRNA expression were assessed during embryogenesis of chicken brain and skeletal muscle, Glut4 protein levels were also evaluated in skeletal muscle and heart, and Glut1 was examined in the developing heart and liver. Glut1 protein expression was detectable throughout brain ontogeny but was highest during early development. Glut1 mRNA levels in the brain remained very high throughout development. Glut3 protein was highest very early and very late and mRNA was highest during the last half of development. In embryonic skeletal muscle, the levels of Glut1and Glut3 proteins and mRNA were highest very early, and declined severely by mid-development. Glut1 protein and mRNA in the heart also peaked early and then decreased steadily. Although Glut1 mRNA levels were consistently high in the embryonic liver, Glut1 protein expression was not detected. These results suggest that (1) Glut1 is developmentally regulated in chick brain, skeletal muscle, and heart, (2) Glut1 mRNA is present in liver but does not appear to be translated, (3) Glut3 in brain increases developmentally but is virtually absent in muscle, and (4) Glut4 protein and mRNA appear to be absent from chick heart and skeletal muscle. Received 11 January 2001; accepted 14 February 2001  相似文献   

4.
5.
Bile acids and bile alcohols in the form of their conjugates are amphipathic end products of cholesterol metabolism with multiple physiological functions. The great variety of bile acids and bile alcohols that are present in vertebrates are tabulated. Bile salts have an enterohepatic circulation resulting from efficient vectorial transport of bile salts through the hepatocyte and the ileal enterocyte; such transport leads to the accumulation of a pool of bile salts that cycles between the liver and intestine. Bile salt anions promote lipid absorption, enhance tryptic cleavage of dietary proteins, and have antimicrobial effects. Bile salts are signaling molecules, activating nuclear receptors in the hepatocyte and ileal enterocyte, as well as an increasing number of G-protein coupled receptors. Bile acids are used therapeutically to correct deficiency states, to decrease the cholesterol saturation of bile, or to decrease the cytotoxicity of retained bile acids in cholestatic liver disease.  相似文献   

6.
Summary The aim of the present investigation was to look for the mechanisms causing disturbances in carbohydrate metabolism during the action of the epileptogenic agent methionine sulfoximine The levels of glucose, glycogen, and indolamines were measured in seven different regions of rat brain. Methionine sulfoximine induced a decrease in serotonin level which was roughly dose-dependent. There were no obvious, changes in tryptophan and 5-hydroxyindoleacetic levels in any area. Methionine sulfoximine induced the known increase in glucose and glycogen levels. The direct precursor of serotonin, 5-hydroxytryptophan, and benserazide (a decarboxylase inhibitor) were then injected into rats in association with methionine sulfoximine. In this case, methionine sulfoximine failed to induce seizures. Moreover, the serotonin level was unchanged and the carbohydrate content did not significantly increase. There was only a rise in 5-hydroxyindoleacetic acid level. This work shows a striking parallelism between serotonin decrease and glycogen increase.  相似文献   

7.
T K Hevor  P Delorme 《Experientia》1990,46(7):710-713
The aim of the present investigation was to look for the mechanisms causing disturbances in carbohydrate metabolism during the action of the epileptogenic agent methionine sulfoximine. The levels of glucose, glycogen, and indolamines were measured in seven different regions of rat brain. Methionine sulfoximine induced a decrease in serotonin level which was roughly dose-dependent. There were no obvious changes in tryptophan and 5-hydroxyindoleacetic levels in any area. Methionine sulfoximine induced the known increase in glucose and glycogen levels. The direct precursor of serotonin. 5-hydroxytryptophan, and benserazide (a decarboxylase inhibitor) were then injected into rats in association with methionine sulfoximine. In this case, methionine sulfoximine failed to induce seizures. Moreover, the serotonin level was unchanged and the carbohydrate content did not significantly increase. There was only a rise in 5-hydroxyindoleacetic acid level. This work shows a striking parallelism between serotonin decrease and glycogen increase.  相似文献   

8.
Kinetics of BRCA1 regulation in response to UVC radiation   总被引:1,自引:0,他引:1  
To investigate changes in BRCA1 following DNA damage, we exposed MCF-7 cells to increasing doses of ultraviolet C. We observed an increase in BRCA1 protein levels above 78 J/m2. This increase was observed as early as 5 min after irradiation. BRCA1 levels were then observed to decrease after 2 h, consistent with the previously published data. By pretreating with cycloheximide prior to irradiation, we observed a decrease in the protein half-life, from 3.5 h to 53 min, suggesting that a decrease in protein half-life may cause the lower levels of BRCA1 after irradiation. We also observed an increase in BRCA1 mRNA within 15 min of irradiation, followed by a decrease after 4 h. These data suggest that newly translated protein may contribute to increases in BRCA1 protein levels. The very rapid changes in BRCA1 support its role as a sensor of DNA damage, as opposed to being a repair gene. Received 6 April 2000; received after revision 23 May 2000; accepted 23 May 2000  相似文献   

9.
10.
11.
Coenzyme Q is a lipid molecule required for respiration and antioxidant protection. Q biosynthesis in Saccharomyces cerevisiae requires nine proteins (Coq1p–Coq9p). We demonstrate in this study that Q levels are modulated during growth by its conversion from demethoxy-Q (DMQ), a late intermediate. Similar conversion was produced when cells were subjected to oxidative stress conditions. Changes in Q6/DMQ6 ratio were accompanied by changes in COQ7 gene mRNA levels encoding the protein responsible for the DMQ hydroxylation, the penultimate step in Q biosynthesis pathway. Yeast coq null mutant failed to accumulate any Q late biosynthetic intermediate. However, in coq7 mutants the addition of exogenous Q produces the DMQ synthesis. Similar effect was produced by over-expressing ABC1/COQ8. These results support the existence of a biosynthetic complex that allows the DMQ6 accumulation and suggest that Coq7p is a control point for the Q biosynthesis regulation in yeast. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 04 September 2008; received after revision 22 October 2008; accepted 23 October 2008  相似文献   

12.
Non-alcoholic fatty liver disease (NAFLD) is currently the world’s most common liver disease, estimated to affect up to one-fourth of the population. Hallmarked by hepatic steatosis, NAFLD is associated with a multitude of detrimental effects and increased mortality. This narrative review investigates the molecular mechanisms of hepatic steatosis in NAFLD, focusing on the four major pathways contributing to lipid homeostasis in the liver. Hepatic steatosis is a consequence of lipid acquisition exceeding lipid disposal, i.e., the uptake of fatty acids and de novo lipogenesis surpassing fatty acid oxidation and export. In NAFLD, hepatic uptake and de novo lipogenesis are increased, while a compensatory enhancement of fatty acid oxidation is insufficient in normalizing lipid levels and may even promote cellular damage and disease progression by inducing oxidative stress, especially with compromised mitochondrial function and increased oxidation in peroxisomes and cytochromes. While lipid export initially increases, it plateaus and may even decrease with disease progression, sustaining the accumulation of lipids. Fueled by lipo-apoptosis, hepatic steatosis leads to systemic metabolic disarray that adversely affects multiple organs, placing abnormal lipid metabolism associated with NAFLD in close relation to many of the current life-style-related diseases.  相似文献   

13.
Menkes disease     
Menkes disease is caused by mutations in the copper-transporting P1B-type ATPase ATP7A. ATP7A has a dual function: it serves to incorporate copper into copper-dependent enzymes, and it maintains intracellular copper levels by removing excess copper from the cytosol. To accomplish both functions, the protein traffics between different cellular locations depending on copper levels.The mechanism for sensing the concentration of copper, for trafficking, as well as the details of the mechanism of copper translocation across the membrane are unknown. Received 24 September 2007; received after revision 12 October 2007; accepted 17 October 2007  相似文献   

14.
t, t-farnesylacetone 1 and hexahydrofarnesylacetone 2 have been previously identified in extracts from the androgenic gland of the male Crab Carcinus maenas. These compounds inhibit in vitro the methylation of E. coli B tRNA and of Calf thymus histones with S-adenosylmethionine methyl-14C as methyl donor and methylases from Crab testis. Rat liver or a 1-adenine methylase from a Mouse plasmocytoma (1 is approximately 200 times more active than 2).  相似文献   

15.
16.
Summary Trypsin causes an activation of serine sulfhydrase in the liver extracts from intact animals, but inhibits enzyme activity in the liver of ethionine treated rats. Trypsin also decreases an elevation of serine sulfhydrase activity caused by S-adenosylmethionine.This work was supported by the Serbian Medical Research Foundation.  相似文献   

17.
Summary Distribution of zinc, copper and manganese has been studied in liver, kidney and bone of rats subjected for 10 months to varied fluoride concentrations in drinking-water. In the liver a significant fall in the levels of Mn, Cu and Zn was registered. In the kidney, the Mn level fell whereas the zinc level increased. In the bone, the copper content fell, whereas the manganese content increased.  相似文献   

18.
InPenaeus vannamei, chymotrypsin is present as two isoenzymes in the hepatopancreas. The enzyme has been localized in F-cells by immunocytochemistry using a specific antibody. By in situ hybridization, with a 510 pb cDNA probe encoding for the first 170 amino acids of the shrimp chymotrypsin, mRNA was localized in the same cells. Gene expression was followed during the intermolt cycle by measuring changes in specific activity in crude extracts, and by the estimation of mRNA levels by Northern blots using the same probe. The increase in specific activity in premolt is preceded in early premolt by an increase in the amount of chymotrypsin mRNA. A second increase is observed in postmolt, suggesting a different mode of regulation of gene expression.  相似文献   

19.
SH-SY5Y neuroblastoma cells were cultured for up to three serial passages in the presence of the copper chelator triethylene tetramine (Trien). The copper-depleted neuroblastoma cell line obtained showed decreased activities of the copper enzymes Cu, Zn superoxide dismutase and cytochrome c oxidase with concomitant increases in reactive oxygen species. Mitochondrial antioxidants (Mn superoxide dismutase and Bcl-2) were up-regulated. Overexpression and activation of p53 were early responses, leading to an increase in p21. Eventually, copper-depleted cells detached from the monolayer and underwent apoptosis. Activation of up-stream caspase-9, but not caspase-8, suggested that apoptosis proceeds via a mitochondrial pathway, followed by caspase-3 activation. The addition of copper sulfate to the copper-depleted cells restored copper enzymes, normalized antioxidant levels and improved cell viability. We conclude that prolonged copper starvation in these replicating cells leads to mitochondrial damage and oxidative stress and ultimately, apoptosis.Received 24 April 2003; accepted 23 May 2003  相似文献   

20.
Cysteinyl-leukotrienes (cys-LTs) are potent smooth muscle contracting agents, which play key roles in inflammatory and allergic diseases. The committed step in cys-LT biosynthesis is catalyzed by leukotriene C4 synthase (LTC4S) as well as microsomal glutathione S-transferase type 2 (MGST2) and type 3 (MGST3). Here we report that intraperitoneal injections of lipopolysaccharide in rats lead to a strong increase of LTC4S messenger RNA (mRNA) levels after approximately 1 h, particularly in the heart, brain, adrenal glands and liver, without any significant effect on MGST2 and MGST3 mRNA levels. After 6 h, LTC4S mRNA returns to basal levels, concomitant with a 4.9-, 4.0-, 2.9- and 2.3-fold induction of LTC4S protein in brain, heart, liver and adrenal gland, respectively. Hence, challenge with lipopolysaccharide in vivo causes an organ-selective, local priming for leukotriene C4 synthesis. Moreover, these data suggest that LTC4S and cys-LTs may be involved in acute systemic inflammatory responses such as fever and tachycardia.Received 12 August 2004; received after revision 27 October 2004; accepted 1 November 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号