首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设U是一个三角代数,Ω是U上平方零元的集合,φ:U×U→U是U上的一个映射(在每个变量上都没可加假设).若对任意的x,y,z∈U且[x,y],[y,z]∈Ω分别有φ(xy,z)=φ(x,z)y+xφ(y,z)和φ(x,yz)=φ(x,y)z+yφ(x,z),则φ是U上的一个双导子.  相似文献   

2.
设U=Tri(A, M, B )是特征不为 2 的三角代数, Q={u∈U:u2=0}且φ:U→U是一个映射(无可加或线性假设)。 证明了如果对任意a,b∈U且[a,b]∈Q, 有φ(ab)=φ(a)b+aφ(b), 则φ是一个可加导子, 其中[a,b]=ab-ba为Lie积, ab=ab+ba为Jordan积。  相似文献   

3.
设U是一个 2-无挠的三角代数,D ={dn}n∈N是U上一个Lie积为平方零元的非线性Jordan高阶可导映射。证明了三角代数U上的每一个Lie积为平方零元的非线性Jordan高阶可导映射都是高阶导子。作为结论的应用,得到套代数或 2-无挠的上三角分块矩阵代数上的每一个Lie积为平方零元的非线性Jordan高阶可导映射都是高阶导子。  相似文献   

4.
设T=Tri(A,M,B)为三角代数,δ:T→T是一个映射(没有可加性的假设).利用代数分解的方法证明了:如果对任意的A,B∈T,且A与B至少有一个是幂等元,有δ(AB)=δ(A)B+Aδ(B),则δ是一个可加导子.并得到了上三角矩阵代数和套代数上此类局部可导非线性映射的具体形式.  相似文献   

5.
研究了三角代数上在零点Lie高阶可导映射的结构,证明了三角代数上的每一个零点Lie高阶可导映射可表示为高阶导子与中心值映射之和.  相似文献   

6.
设U=Tri(A,M,B)是三角代数,δ,τ为U→U上的两个映射(无可加性或线性假设).利用矩阵分块的方法证明了:如果对任意的a,b∈U,有δ([a,b])=[δ(a),b]+[a,τ(b)],则τ=σ+L,δ=θ+f,其中:σ:U→U是可加导子;L:U→Z(U)是模可加的中心值映射;θ:U→U是关于σ的可加广义导子;f:U→Z(U)是中心值映射,且f([a,b])=0.  相似文献   

7.
设U是一个2-无挠的三角代数,Ω={x∈U:x~2=0},■是U上一列映射(无可加性假设).用代数分解方法证明:若对任意的■,x,y,z∈U且xyz∈Ω,有■,则D是一个高阶导子.  相似文献   

8.
三角代数上一类局部非线性三重高阶可导映射   总被引:2,自引:1,他引:2  
对Lehmann和Rojo给出的关于各种随机序关系的定理作 进一步推广; 说明有序总体的同阶次序统计量仍保持序关系; 证明序关系在单调变换下不 变性和散度序关系在凸函数作用下的不变性.  相似文献   

9.
运用代数分解方法研究了三角代数U=Tri(A,M,B)上的部分ξ-Lie可导映射.证明了如果对任意A∈A存在整数k使得kIA-A可逆,则U上的线性映射为导子当且仅当它是部分ξ-Lie可导映射.作为应用,证明了非平凡套代数上的线性映射是内导子当且仅当其为部分ξ-Lie可导映射.  相似文献   

10.
设U=Tri(A,M,B )是含单位元1的三角代数,1A、1B分别是A和B的单位元。对任意的A∈A, B∈B分别存在整数k1、k2,使得k11A-A, k21B-B在三角代数中可逆。利用代数分解的方法,证明了如果{φn}n∈N:U→U是一列线性映射满足对任意的U,V∈U且UV=VU=1,有φn([U,V]ξ)=∑i+j=nφi(U)φj(V)-ξφi(V)φj(U)(ξ≠0,1),则{φn}n∈N是U上的高阶导子,其中φ0=id0是恒等映射,[U,V]ξ=UV-ξVU。  相似文献   

11.
设U=Tri(A,M,B)是一个2-无扰的三角代数,{φn}n∈?是U上的一列线性映射.用代数分解方法证明:如果对任意n∈?,U,V∈U且U°V=0,有φn([U,V]ξ)=∑i+j=n[φi(U),φj(V)]ξ,ξ≠0,±1,则{φn}n∈?是一个高阶导子,其中[U,V]ξ=UV-ξVU为ξ-Lie积,U°V=UV...  相似文献   

12.
设U是一个三角代数,δ是U上的一个映射(无可加性假设),σ是U上的一个自同构.利用代数分解方法,证明了如果对任意的x,y∈U,有δ(xy)=δ(x)y+σ(x)δ(y),则δ是一个可加的σ-导子.  相似文献   

13.
运用矩阵分块方法研究三角代数上的一类非线性可交换映射: 模线性可交换映射. 刻画了此类映射的具体形式, 给出了三角代数上模线性可交换映射是真可交换映射的充分条件, 并证明了套代数上的每个模线性可交换映射都是真可交换映射.  相似文献   

14.
设T=Tri(A,M,B)是三角代数,{δn}n∈N:T→T是一列映射(没有可加性的假设,其中δ0是恒等映射).若对任意的U,V∈T且U与V中至少有一个是幂等元,有δn(UV)=∑i+j=nδi(U)δj(V),则{δn}n∈N是T上可加的高阶导子.  相似文献   

15.
三角代数上的可乘导子   总被引:1,自引:0,他引:1  
设T是环R上的三角代数,研究三角代数T上的可乘导子的可加性.利用矩阵分块理论证明了满足一定条件的三角代数上的每一个可乘导子是可加的,从而得到套代数中许多标准子代数上的可乘导子是可加的.  相似文献   

16.
设M是Hilbert空间H上维数大于1的因子von Neumann代数,用代数分解方法证明了:如果非线性映射δ:M→M满足对任意的A,B,C∈M且ABC=0,有δ([[A,B],C])=[[δ(A),B],C]+[[A,δ(B)],C]+[[A,B],δ(C)],则存在可加导子d:M→M,使得对任意的A∈M,有δ(A)=d(A)+τ(A)I,其中τ:M→瓘I是一个非线性映射,满足对任意的A,B,C∈M且ABC=0时,有τ([[A,B],C])=0.  相似文献   

17.
为了研究在两个代数之间的固定点上可乘的可加映射什么时候是任意点可乘的,本文利用矩阵运算技巧,在三角代数范畴上证明了两个三角代数之间的可加满射在固定点可乘时一定是可乘的。最后将该结果应用到了Hilbert空间的套代数上。  相似文献   

18.
19.
设G是一个满足MN=0=NM的2-无挠的广义矩阵代数,Q={A∈G:A2=0},D={dn}n∈N是G上一列映射(没有可加性假设)。文章证明:若对任意n∈N,A,B,C∈G且ABC∈Q,有dn(ABC)=∑r+s+t=ndr(A)ds(B)dt(C),则D是一个可加的高阶导子。作为应用,在三角代数上得到了相同的结论。  相似文献   

20.
证明了套代数上的每个非线性的三元Lie导子,是一个可加导子与一个到其中心上的映射的和,而该映射将三元积映成0。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号