首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Tanvir NR  Chapman R  Levan AJ  Priddey RS 《Nature》2005,438(7070):991-993
Gamma-ray bursts (GRBs) divide into two classes: 'long', which typically have initial durations of T90 > 2 s, and 'short', with durations of T90 < 2 s (where T90 is the time to detect 90% of the observed fluence). Long bursts, which on average have softer gamma-ray spectra, are known to be associated with stellar core-collapse events-in some cases simultaneously producing powerful type Ic supernovae. In contrast, the origin of short bursts has remained mysterious until recently. A subsecond intense 'spike' of gamma-rays during a giant flare from the Galactic soft gamma-ray repeater, SGR 1806-20, reopened an old debate over whether some short GRBs could be similar events seen in galaxies out to approximately 70 Mpc (refs 6-10; redshift z approximately 0.016). Shortly after that, localizations of a few short GRBs (with optical afterglows detected in two cases) have shown an apparent association with a variety of host galaxies at moderate redshifts. Here we report a correlation between the locations of previously observed short bursts and the positions of galaxies in the local Universe, indicating that between 10 and 25 per cent of short GRBs originate at low redshifts (z < 0.025).  相似文献   

4.
伽玛暴余辉的双拐折行为可以用双喷流成份结构模型得到较好的解释,但至今其物理参数还未解。为给出其相应的物理参数,文中将对具有双喷流成份的伽玛暴光学余辉进行统计分析,用外激波模型时域指数α和频域指数β的关系(closure relation)对数据进行限制,得到GRB 071003,GRB 080319B,GRB 090426和GRB 100219A共4个具有外激波模型的伽玛暴双成份喷流特征。这些伽玛暴第一个喷流成份的张角都在1°以内,而第二个喷流成份的张角增大到2°~7°,与单成份喷流的张角一致。其各向同性辐射能量在1051~1054erg,电子谱指数p约为2,比典型值2.3硬。长暴能较好符合Amati关系。  相似文献   

5.
Hand E 《Nature》2012,485(7398):290-291
  相似文献   

6.
γ暴能谱硬度系数的分布及其分类特征   总被引:1,自引:0,他引:1  
采用非参量化线性相关性分析方法分析康顿空间天文台(CGRO)上的BATSE仪器观测到的γ暴不同能道流量间的相关性,提出新的γ暴能谱硬度系数的定义,并分析其分布特征,进一步证实了γ蛤谱硬度系数与持续时间之间的反相关性,并对这个反相关性提出新的解释,软谱长暴,短暴硬谱,同时,从定量上给出按谱硬度系数对γ暴进行分类的依据,提出了γ暴新的分类方法。  相似文献   

7.
Cowan JJ  Sneden C 《Nature》2006,440(7088):1151-1156
The first stars in the Universe were probably quite different from those born today. Composed almost entirely of hydrogen and helium (plus a tiny trace of lithium), they lacked the heavier elements that determine the formation and evolution of younger stars. Although we cannot observe the very first stars--they died long ago in supernovae explosions--they created heavy elements that were incorporated into the next generation. Here we describe how observations of heavy elements in the oldest surviving stars in our Galaxy's halo help us understand the nature of the first stars--those responsible for the chemical enrichment of our Galaxy and Universe.  相似文献   

8.
Diemand J  Moore B  Stadel J 《Nature》2005,433(7024):389-391
The Universe was nearly smooth and homogeneous before a redshift of z = 100, about 20 million years after the Big Bang. After this epoch, the tiny fluctuations imprinted upon the matter distribution during the initial expansion began to collapse because of gravity. The properties of these fluctuations depend on the unknown nature of dark matter, the determination of which is one of the biggest challenges in present-day science. Here we report supercomputer simulations of the concordance cosmological model, which assumes neutralino dark matter (at present the preferred candidate), and find that the first objects to form are numerous Earth-mass dark-matter haloes about as large as the Solar System. They are stable against gravitational disruption, even within the central regions of the Milky Way. We expect over 10(15) to survive within the Galactic halo, with one passing through the Solar System every few thousand years. The nearest structures should be among the brightest sources of gamma-rays (from particle-particle annihilation).  相似文献   

9.
10.
Mashchenko S  Couchman HM  Wadsley J 《Nature》2006,442(7102):539-542
The standard cosmological model, now strongly constrained by direct observations of the Universe at early epochs, is very successful in describing the evolution of structure on large and intermediate scales. Unfortunately, serious contradictions remain on smaller, galactic scales. Among the main small-scale problems is a significant and persistent discrepancy between observations of nearby galaxies, which imply that galactic dark matter haloes have a density profile with a flat core, and the cosmological model, which predicts that the haloes should have divergent density (a cusp) at the centre. Here we report numerical simulations that show that random bulk motions of gas in small primordial galaxies, of the magnitude expected in these systems, will result in a flattening of the central dark matter cusp on relatively short timescales (approximately 10(8) years). Gas bulk motions in early galaxies are driven by supernova explosions that result from ongoing star formation. Our mechanism is general, and would have operated in all star-forming galaxies at redshifts z > or = 10. Once removed, the cusp cannot be reintroduced during the subsequent mergers involved in the build-up of larger galaxies. As a consequence, in the present Universe both small and large galaxies would have flat dark matter core density profiles, in agreement with observations.  相似文献   

11.
The formation of the first massive objects in the infant Universe remains impossible to observe directly and yet it sets the stage for the subsequent evolution of galaxies. Although some black holes with masses more than 10(9) times that of the Sun have been detected in luminous quasars less than one billion years after the Big Bang, these individual extreme objects have limited utility in constraining the channels of formation of the earliest black holes; this is because the initial conditions of black hole seed properties are quickly erased during the growth process. Here we report a measurement of the amount of black hole growth in galaxies at redshift z = 6-8 (0.95-0.7 billion years after the Big Bang), based on optimally stacked, archival X-ray observations. Our results imply that black holes grow in tandem with their host galaxies throughout cosmic history, starting from the earliest times. We find that most copiously accreting black holes at these epochs are buried in significant amounts of gas and dust that absorb most radiation except for the highest-energy X-rays. This suggests that black holes grew significantly more during these early bursts than was previously thought, but because of the obscuration of their ultraviolet emission they did not contribute to the re-ionization of the Universe.  相似文献   

12.
13.
Davis M 《Nature》2001,410(6825):153-154
  相似文献   

14.
15.
Supernova explosions in the Universe   总被引:1,自引:0,他引:1  
Burrows A 《Nature》2000,403(6771):727-733
During the lifetime of our Milky Way galaxy, there have been something like 100 million supernova explosions, which have enriched the Galaxy with the oxygen we breathe, the iron in our cars, the calcium in our bones and the silicon in the rocks beneath our feet. These exploding stars also influence the birth of new stars and are the source of the energetic cosmic rays that irradiate us on the Earth. The prodigious amount of energy (approximately 10(51), or approximately 2.5 x 10(28) megatonnes of TNT equivalent) and momentum associated with each supernova may even have helped to shape galaxies as they formed in the early Universe. Supernovae are now being used to measure the geometry of the Universe, and have recently been implicated in the decades-old mystery of the origin of the gamma-ray bursts. Together with major conceptual advances in our theoretical understanding of supernovae, these developments have made supernovae the centre of attention in astrophysics.  相似文献   

16.
17.
宇宙的视界   总被引:1,自引:0,他引:1  
对主要各种宇宙模型的粒子介和事件视界进行了计算和分析,并将这些宇宙模型的视界有无情况汇成表。  相似文献   

18.
The taxonomy of optical emission detected during the critical first few minutes after the onset of a gamma-ray burst (GRB) defines two broad classes: prompt optical emission correlated with prompt gamma-ray emission, and early optical afterglow emission uncorrelated with the gamma-ray emission. The standard theoretical interpretation attributes prompt emission to internal shocks in the ultra-relativistic outflow generated by the internal engine; early afterglow emission is attributed to shocks generated by interaction with the surrounding medium. Here we report on observations of a bright GRB that, for the first time, clearly show the temporal relationship and relative strength of the two optical components. The observations indicate that early afterglow emission can be understood as reverberation of the energy input measured by prompt emission. Measurements of the early afterglow reverberations therefore probe the structure of the environment around the burst, whereas the subsequent response to late-time impulsive energy releases reveals how earlier flaring episodes have altered the jet and environment parameters. Many GRBs are generated by the death of massive stars that were born and died before the Universe was ten per cent of its current age, so GRB afterglow reverberations provide clues about the environments around some of the first stars.  相似文献   

19.
李永华 《科技信息》2012,(31):503-503,502
茫茫宇宙中,有无数颗星星,有众多的星系。人们通过实验,观察到各种守恒量。那么,这些守恒量本身有怎样的性质呢。本文提出了一个观点:即宇宙中在一切过程中都守恒的量等于零。  相似文献   

20.
宇宙中存在暗物质已经得到大量天文观测的证实,但关于暗物质粒子的本质我们仍旧一无所知。为了理解暗物质的性质,许多暗物质探测实验正在展开。直接探测实验探测的是暗物质粒子与探测器物质碰撞所留下的信号,而间接探测实验则寻找暗物质湮灭的产物,如高能伽马射线、高能中微子、正电子和反质子等。理解暗物质所产生的这些信号需要我们了解暗物质的微观粒子的性质,同时也需要了解暗物质在星系或星系团中的分布形式等宏观性质。随着更大规模、更高灵敏度的实验不断投入运行,暗物质之谜有可能在不久的将来得以破解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号