首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
McLean DL  Fan J  Higashijima S  Hale ME  Fetcho JR 《Nature》2007,446(7131):71-75
Animals move over a range of speeds by using rhythmic networks of neurons located in the spinal cord. Here we use electrophysiology and in vivo imaging in larval zebrafish (Danio rerio) to reveal a systematic relationship between the location of a spinal neuron and the minimal swimming frequency at which the neuron is active. Ventral motor neurons and excitatory interneurons are rhythmically active at the lowest swimming frequencies, with increasingly more dorsal excitatory neurons engaged as swimming frequency rises. Inhibitory interneurons follow the opposite pattern. These inverted patterns of recruitment are independent of cell soma size among interneurons, but may be partly explained by concomitant dorso-ventral gradients in input resistance. Laser ablations of ventral, but not dorsal, excitatory interneurons perturb slow movements, supporting a behavioural role for the topography. Our results reveal an unexpected pattern of organization within zebrafish spinal cord that underlies the production of movements of varying speeds.  相似文献   

2.
A neuronal mechanism for sensory gating during locomotion in a vertebrate   总被引:6,自引:0,他引:6  
K T Sillar  A Roberts 《Nature》1988,331(6153):262-265
The response of the foot to touch during walking depends on whether it is in the air or on the ground. In most animals, reflex responses to external stimuli are similarly adapted to their timing in the locomotor cycle, but there is only fragmentary information about the neural mechanisms involved. In arthropods, reflex modulation can occur in the sensory receptors themselves and in neurons that discharge during locomotion. By recording with dye-filled microelectrodes from neurons in the spinal cord of frog embryos, we describe reflex modulation at the level of sensory interneurons. Sensory inputs from skin receptors excite a specific class of spinal sensory interneuron whose activity leads to reflex bending of the body away from the stimulus. During swimming, these inputs are gated by rhythmic postsynaptic inhibition, so that sensory drive reaches motor neurons only at phases in the locomotor cycle when the resulting contraction would likewise turn the embryo away from the stimulated side. Such gating of sensory pathways could be a general feature of all locomotor systems where responses to sensory stimuli need to be adapted to the phase of locomotion.  相似文献   

3.
Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement. These networks produce left-right alternation of limbs as well as coordinated activation of flexor and extensor muscles. Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favourable effect on harness racing performance. Examination of wild-type and Dmrt3-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions Dmrt3 in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The DMRT3 mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation.  相似文献   

4.
M Golubitsky  I Stewart  P L Buono  J J Collins 《Nature》1999,401(6754):693-695
Animal locomotion is controlled, in part, by a central pattern generator (CPG), which is an intraspinal network of neurons capable of generating a rhythmic output. The spatio-temporal symmetries of the quadrupedal gaits walk, trot and pace lead to plausible assumptions about the symmetries of locomotor CPGs. These assumptions imply that the CPG of a quadruped should consist of eight nominally identical subcircuits, arranged in an essentially unique matter. Here we apply analogous arguments to myriapod CPGs. Analyses based on symmetry applied to these networks lead to testable predictions, including a distinction between primary and secondary gaits, the existence of a new primary gait called 'jump', and the occurrence of half-integer wave numbers in myriapod gaits. For bipeds, our analysis also predicts two gaits with the out-of-phase symmetry of the walk and two gaits with the in-phase symmetry of the hop. We present data that support each of these predictions. This work suggests that symmetry can be used to infer a plausible class of CPG network architectures from observed patterns of animal gaits.  相似文献   

5.
Moritz CT  Perlmutter SI  Fetz EE 《Nature》2008,456(7222):639-642
A potential treatment for paralysis resulting from spinal cord injury is to route control signals from the brain around the injury by artificial connections. Such signals could then control electrical stimulation of muscles, thereby restoring volitional movement to paralysed limbs. In previously separate experiments, activity of motor cortex neurons related to actual or imagined movements has been used to control computer cursors and robotic arms, and paralysed muscles have been activated by functional electrical stimulation. Here we show that Macaca nemestrina monkeys can directly control stimulation of muscles using the activity of neurons in the motor cortex, thereby restoring goal-directed movements to a transiently paralysed arm. Moreover, neurons could control functional stimulation equally well regardless of any previous association to movement, a finding that considerably expands the source of control signals for brain-machine interfaces. Monkeys learned to use these artificial connections from cortical cells to muscles to generate bidirectional wrist torques, and controlled multiple neuron-muscle pairs simultaneously. Such direct transforms from cortical activity to muscle stimulation could be implemented by autonomous electronic circuitry, creating a relatively natural neuroprosthesis. These results are the first demonstration that direct artificial connections between cortical cells and muscles can compensate for interrupted physiological pathways and restore volitional control of movement to paralysed limbs.  相似文献   

6.
It is generally accepted that the direct connection from the motor cortex to spinal motor neurons is responsible for dexterous hand movements in primates. However, the role of the 'phylogenetically older' indirect pathways from the motor cortex to motor neurons, mediated by spinal interneurons, remains elusive. Here we used a novel double-infection technique to interrupt the transmission through the propriospinal neurons (PNs), which act as a relay of the indirect pathway in macaque monkeys (Macaca fuscata and Macaca mulatta). The PNs were double infected by injection of a highly efficient retrograde gene-transfer vector into their target area and subsequent injection of adeno-associated viral vector at the location of cell somata. This method enabled reversible expression of green fluorescent protein (GFP)-tagged tetanus neurotoxin, thereby permitting the selective and temporal blockade of the motor cortex–PN–motor neuron pathway. This treatment impaired reach and grasp movements, revealing a critical role for the PN-mediated pathway in the control of hand dexterity. Anti-GFP immunohistochemistry visualized the cell bodies and axonal trajectories of the blocked PNs, which confirmed their anatomical connection to motor neurons. This pathway-selective and reversible technique for blocking neural transmission does not depend on cell-specific promoters or transgenic techniques, and is a new and powerful tool for functional dissection in system-level neuroscience studies.  相似文献   

7.
During vertebrate development, the specification of distinct cell types is thought to be controlled by inductive signals acting at different concentration thresholds. The degree of receptor activation in response to these signals is a known determinant of cell fate, but the later steps at which graded signals are converted into all-or-none distinctions in cell identity remain poorly resolved. In the ventral neural tube, motor neuron and interneuron generation depends on the graded activity of the signalling protein Sonic hedgehog (Shh). These neuronal subtypes derive from distinct progenitor cell populations that express the homeodomain proteins Nkx2.2 or Pax6 in response to graded Shh signalling. In mice lacking Pax6, progenitor cells generate neurons characteristic of exposure to greater Shh activity. However, Nkx2.2 expression expands dosally in Pax6 mutants, raising the possibility that Pax6 controls neuronal pattern indirectly. Here we provide evidence that Nkx2.2 has a primary role in ventral neuronal patterning. In Nkx2.2 mutants, Pax6 expression is unchanged but cells undergo a ventral-to-dorsal transformation in fate and generate motor neurons rather than interneurons. Thus, Nkx2.2 has an essential role in interpreting graded Shh signals and selecting neuronal identity.  相似文献   

8.
P S Dickinson  C Mecsas  E Marder 《Nature》1990,344(6262):155-158
Animals make many different movements as circumstances dictate. These movements often involve the coordination of several neural networks, the output of which can be changed by modulatory substances. Here we report that the neuropeptide red pigment concentrating hormone modulates the interactions between two rhythmic pattern-generating networks in the lobster stomatogastric nervous system. Red pigment concentrating hormone markedly enhances the amplitude of synaptic interactions between elements of two pattern-generating networks--the cardiac sac and the gastric mill. Consequently, two networks operating under some circumstances virtually independently can be fused into one functional unit operating differently from either of the two original networks. These results show how a neuropeptide can alter the functional configuration of a neural network so that widely disparate outputs can be produced by the same neurons.  相似文献   

9.
Embryonic assembly of a central pattern generator without sensory input   总被引:7,自引:0,他引:7  
Suster ML  Bate M 《Nature》2002,416(6877):174-178
Locomotion depends on the integration of sensory information with the activity of central circuitry, which generates patterned discharges in motor nerves to appropriate muscles. Isolated central networks generate fictive locomotor rhythms (recorded in the absence of movement), indicating that the fundamental pattern of motor output depends on the intrinsic connectivity and electrical properties of these central circuits. Sensory inputs are required to modify the pattern of motor activity in response to the actual circumstances of real movement. A central issue for our understanding of how locomotor circuits are specified and assembled is the extent to which sensory inputs are required as such systems develop. Here we describe the effects of eliminating sensory function and structure on the development of the peristaltic motor pattern of Drosophila embryos and larvae. We infer that the circuitry for peristaltic crawling develops in the complete absence of sensory input; however, the integration of this circuitry into actual patterns of locomotion requires additional information from the sensory system. In the absence of sensory inputs, the polarity of movement is deranged, and backward peristaltic waves predominate at the expense of forward peristalsis.  相似文献   

10.
Dynamic coding of behaviourally relevant stimuli in parietal cortex.   总被引:12,自引:0,他引:12  
Louis J Toth  John A Assad 《Nature》2002,415(6868):165-168
A general function of cerebral cortex is to allow the flexible association of sensory stimuli with specific behaviours. Many neurons in parietal, prefrontal and motor cortical areas are activated both by particular movements and by sensory cues that trigger these movements, suggesting a role in linking sensation to action. For example, neurons in the lateral intraparietal area (LIP) encode both the location of visual stimuli and the direction of saccadic eye movements. LIP is not believed to encode non-spatial stimulus attributes such as colour. Here we investigated whether LIP would encode colour if colour was behaviourally linked to the eye movement. We trained monkeys to make an eye movement in one of two directions based alternately on the colour or location of a visual cue. When cue colour was relevant for directing eye movement, we found a substantial fraction of LIP neurons selective for cue colour. However, when cue location was relevant, colour selectivity was virtually absent in LIP. These results demonstrate that selectivity of cortical neurons can change as a function of the required behaviour.  相似文献   

11.
Schneidman E  Berry MJ  Segev R  Bialek W 《Nature》2006,440(7087):1007-1012
Biological networks have so many possible states that exhaustive sampling is impossible. Successful analysis thus depends on simplifying hypotheses, but experiments on many systems hint that complicated, higher-order interactions among large groups of elements have an important role. Here we show, in the vertebrate retina, that weak correlations between pairs of neurons coexist with strongly collective behaviour in the responses of ten or more neurons. We find that this collective behaviour is described quantitatively by models that capture the observed pairwise correlations but assume no higher-order interactions. These maximum entropy models are equivalent to Ising models, and predict that larger networks are completely dominated by correlation effects. This suggests that the neural code has associative or error-correcting properties, and we provide preliminary evidence for such behaviour. As a first test for the generality of these ideas, we show that similar results are obtained from networks of cultured cortical neurons.  相似文献   

12.
13.
Motor neuron columnar fate imposed by sequential phases of Hox-c activity   总被引:1,自引:0,他引:1  
Dasen JS  Liu JP  Jessell TM 《Nature》2003,425(6961):926-933
The organization of neurons into columns is a prominent feature of central nervous system structure and function. In many regions of the central nervous system the grouping of neurons into columns links cell-body position to axonal trajectory, thus contributing to the establishment of topographic neural maps. This link is prominent in the developing spinal cord, where columnar sets of motor neurons innervate distinct targets in the periphery. We show here that sequential phases of Hox-c protein expression and activity control the columnar differentiation of spinal motor neurons. Hox expression in neural progenitors is established by graded fibroblast growth factor signalling and translated into a distinct motor neuron Hox pattern. Motor neuron columnar fate then emerges through cell autonomous repressor and activator functions of Hox proteins. Hox proteins also direct the expression of genes that establish motor topographic projections, thus implicating Hox proteins as critical determinants of spinal motor neuron identity and organization.  相似文献   

14.
用于机器人运动控制的通用小脑认知模块的构建   总被引:1,自引:0,他引:1  
用具有神经生理学性质的小脑模型实现对机器人系统各种不同感觉协调运动的控制,这是当前机器人控制领域的一个研究热点。但针对一种控制任务就要构建一种对应的小脑模型,这种方式效率很不理想。文中以运动控制为基础,构建了一种包括所有主要细胞类型及其连接的通用小脑认知模块(General Cerebellum CognitiveModule,GCCM)。对给定的背景知识,GCCM能够通过学习生成理想输出,因而,可用于各种不同的机器人感觉运动控制任务。仿真实验证明,通过将脊髓层次上的轨迹误差检测与小脑中的记忆轨迹结合起来,嵌入的GCCM控制系统能对快速手臂延伸运动进行精确的鲁棒控制。  相似文献   

15.
16.
Brecht M  Schneider M  Sakmann B  Margrie TW 《Nature》2004,427(6976):704-710
Neuronal activity in the motor cortex is understood to be correlated with movements, but the impact of action potentials (APs) in single cortical neurons on the generation of movement has not been fully determined. Here we show that trains of APs in single pyramidal cells of rat motor cortex can evoke long sequences of small whisker movements. For layer-5 pyramids, we find that evoked rhythmic movements have a constant phase relative to the AP train, indicating that single layer-5 pyramids can reset the rhythm of whisker movements. Action potentials evoked in layer-6 pyramids can generate bursts of rhythmic whisking, with a variable phase of movements relative to the AP train. An increasing number of APs decreases the latency to onset of movement, whereas AP frequency determines movement direction and amplitude. We find that the efficacy of cortical APs in evoking whisker movements is not dependent on background cortical activity and is greatly enhanced in waking rats. We conclude that in vibrissae motor cortex sparse AP activity can evoke movements.  相似文献   

17.
基于中枢模式发生器(central pattern generator,CPG)的动物运动控制机理实现四足机器人AIBO的行走控制.利用Kimura振荡神经元构建CPG分布式控制网络,通过多目标遗传算法优化调整CPG网络中的参数,在AIBO上实现类似动物行走(walk)的行走模式.通过Webots仿真和实体实验,验证所设计的CPG控制网络和控制方法的可行性与有效性.  相似文献   

18.
Ethier C  Oby ER  Bauman MJ  Miller LE 《Nature》2012,485(7398):368-371
Patients with spinal cord injury lack the connections between brain and spinal cord circuits that are essential for voluntary movement. Clinical systems that achieve muscle contraction through functional electrical stimulation (FES) have proven to be effective in allowing patients with tetraplegia to regain control of hand movements and to achieve a greater measure of independence in daily activities. In existing clinical systems, the patient uses residual proximal limb movements to trigger pre-programmed stimulation that causes the paralysed muscles to contract, allowing use of one or two basic grasps. Instead, we have developed an FES system in primates that is controlled by recordings made from microelectrodes permanently implanted in the brain. We simulated some of the effects of the paralysis caused by C5 or C6 spinal cord injury by injecting rhesus monkeys with a local anaesthetic to block the median and ulnar nerves at the elbow. Then, using recordings from approximately 100 neurons in the motor cortex, we predicted the intended activity of several of the paralysed muscles, and used these predictions to control the intensity of stimulation of the same muscles. This process essentially bypassed the spinal cord, restoring to the monkeys voluntary control of their paralysed muscles. This achievement is a major advance towards similar restoration of hand function in human patients through brain-controlled FES. We anticipate that in human patients, this neuroprosthesis would allow much more flexible and dexterous use of the hand than is possible with existing FES systems.  相似文献   

19.
Performance monitoring by the supplementary eye field   总被引:10,自引:0,他引:10  
Stuphorn V  Taylor TL  Schall JD 《Nature》2000,408(6814):857-860
Intelligent behaviour requires self-control based on the consequences of actions. The countermanding task is designed to study self-control; it requires subjects to withhold planned movements in response to an imperative stop signal, which they can do with varying success. In humans, the medial frontal cortex has been implicated in the supervisory control of action. In monkeys, the supplementary eye field in the dorsomedial frontal cortex is involved in producing eye movements, but its precise function has not been clarified. To investigate the role of the supplementary eye field in the control of eye movements, we recorded neural activity in macaque monkeys trained to perform an eye movement countermanding task. Distinct groups of neurons were active after errors, after successful withholding of a partially prepared movement, or in association with reinforcement. These three forms of activation could not be explained by sensory or motor factors. Our results lead us to put forward the hypothesis that the supplementary eye field contributes to monitoring the context and consequences of eye movements.  相似文献   

20.
A small-systems approach to motor pattern generation   总被引:16,自引:0,他引:16  
Nusbaum MP  Beenhakker MP 《Nature》2002,417(6886):343-350
How neuronal networks enable animals, humans included, to make coordinated movements is a continuing goal of neuroscience research. The stomatogastric nervous system of decapod crustaceans, which contains a set of distinct but interacting motor circuits, has contributed significantly to the general principles guiding our present understanding of how rhythmic motor circuits operate at the cellular level. This results from a detailed documentation of the circuit dynamics underlying motor pattern generation in this system as well as its modulation by individual transmitters and neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号